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83.	Σωστή επιλογή είναι η α.
Έστω υ1  η ταχύτητα της σφαίρας Σ1 πριν 
από την κρούση και  

11
,   2  οι ταχύτητες 

των σφαιρών Σ1 και Σ2 αντίστοιχα μετά την 
κρούση. 
Η ενέργεια E  που μεταβιβάζεται από τη Σ1 
στη Σ2 κατά την κρούση ισούται με τη μεταβο-
λή της κινητικής ενέργειας της Σ2. Επομένως:
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Το ποσοστό επί τοις εκατό (%) της αρχικής 
κινητικής ενέργειας της σφαίρας Σ1 που με-
ταβιβάστηκε στη σφαίρα Σ2 κατά την κρούση 
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84.	 Σωστή επιλογή είναι η γ.
Έστω υ1  η ταχύτητα του σώματος Σ1 πριν 
από την κρούση. Η αλγεβρική τιμή της τα-
χύτητας  1  του Σ1 αμέσως μετά την κρούση 
υπολογίζεται από τη σχέση:
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Το ζητούμενο ποσοστό υπολογίζεται από τη 
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85.	 Σωστή επιλογή είναι η β. 

Έχουμε:   
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86.	 Σωστή επιλογή είναι η α.
Έστω υ1  η ταχύτητα του σώματος Σ1 πριν 
από την κρούση. Οι αλγεβρικές τιμές των 
ταχυτήτων  1  και  2  των σωμάτων Σ1 και 
Σ2 αντίστοιχα αμέσως μετά την κρούση δί-

νονται από τους τύπους:   
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Το ζητούμενο ποσοστό υπολογίζεται 
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ή λόγω της σχέσης (3): π = 75%.

87.	 Σωστή επιλογή είναι η γ.
Έστω υ1  η ταχύτητα του σώματος Σ1 πριν από 
την κρούση και  2  η ταχύτητα του Σ2 αμέσως 
μετά την κρούση. Έχουμε: K K
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88.	 Σωστή επιλογή είναι η β.

Έχουμε   
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Η μεταβολή της ορμής της σφαίρας Σ1 εξαιτίας 

της κρούσης είναι   
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Το μέτρο της μέσης δύναμης F που ασκείται 

στη σφαίρα Σ1 από τη σφαίρα Σ2 κατά τη διάρ-

κεια της κρούσης υπολογίζεται από τη σχέση:  
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89.	 Σωστή επιλογή είναι η β.
Έστω υ1  και 1  οι αλγεβρικές τιμές των ταχυ-
τήτων του σώματος Σ1 ακριβώς πριν και αμέ-
σως μετά την κρούση με το σώμα Σ2. Έχουμε:
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Το ζητούμενο ποσοστό υπολογίζεται από τη 

σχέση:  
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(1): π = 36%.

90.	 Σωστή επιλογή είναι η α.
Έστω   η ταχύτητα της σφαίρας Α ακριβώς 
πριν από την κρούση και    η ταχύτητα της 
σφαίρας Β αμέσως μετά την κρούση.
Το ποσοστό της μηχανικής ενέργειας που με-
ταφέρθηκε από τη σφαίρα Α στη σφαίρα Β 
κατά την κρούση είναι ίσο με το ποσοστό της 
κινητικής ενέργειας της σφαίρας Α ακριβώς 
πριν από την κρούση που μεταφέρθηκε στη 
σφαίρα Β κατά την κρούση. Το ποσοστό αυτό 
γίνεται μέγιστο, όταν είναι ίσο με 100 %. Επο-

μένως: 
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91.	 Σωστή επιλογή είναι η α.
Το ποσοστό επί τοις εκατό (%) Π1  της κινη-
τικής ενέργειας του σώματος Σ1 ακριβώς πριν 
από την κρούση που μεταβιβάζεται στο ακί-
νητο σώμα Σ2 κατά την κρούση υπολογίζεται 

από τη σχέση: 
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(βλ. Μεθοδολογία Β2). 

Έστω ότι η σφαίρα Σ2 κινούμενη με ταχύτη-
τα υ2  συγκρούεται ελαστικά με την ακίνητη 
σφαίρα Σ1. Το ποσοστό επί τοις εκατό (%) Π2  
της κινητικής ενέργειας του σώματος Σ2 ακρι-
βώς πριν από την κρούση που μεταβιβάζεται 
στο σώμα Σ1 κατά την κρούση υπολογίζεται 
από τη σχέση:
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Συνεπώς, ισχύει: Π1 = Π2.

92.	 Σωστή επιλογή είναι η α.
Έστω 1  και 2  οι αλγεβρικές τιμές των τα-
χυτήτων των σωμάτων Σ1 και Σ2 αντίστοιχα 

αμέσως μετά την κρούση. Έχουμε:
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Η αλγεβρική τιμή της μεταβολής της ορμής 
του σώματος Σ2 κατά την κρούση υπολογίζε-

ται από τη σχέση:
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Δp2 = +1,2m1υ1.

93.	 Σωστή επιλογή είναι η γ.
Έστω 1  και υ1  οι αλγεβρικές τιμές των ταχυ-
τήτων του σώματος Σ1 αμέσως μετά και ακρι-
βώς πριν από την κρούση με το σώμα Σ2. 
Επειδή το σώμα Σ1 έχει μεταβιβάσει στο σώμα 
Σ2 κατά την κρούση το 96 % της κινητικής του 
ενέργειας, αμέσως μετά την κρούση θα του 
έχει απομείνει το 4% της κινητικής ενέργειας 
που είχε πριν από την κρούση. Επομένως:
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94.	 Α.	 Σωστή επιλογή είναι η β.
Αμέσως μετά την κρούση το σώμα Σ2 αποκτά 
ταχύτητα  2  ίδιας φοράς με τη φορά της τα-
χύτητας υ1  που είχε το σώμα Σ1 ακριβώς πριν 
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από την κρούση. Η μεταβολή της ορμής του 
σώματος Σ2 εξαιτίας της κρούσης είναι:

  

p p p
2 2 2
     ΄    ή, αλγεβρικά: 

p m
2 2 2

0   .

Επειδή κατά τη διάρκεια της κρούσης η ορμή 
του συστήματος των δύο σωμάτων διατηρεί-
ται σταθερή, ισχύει:
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Β.	 Σωστή επιλογή είναι η α.

Έχουμε: p m
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Επειδή η χρονική διάρκεια της κρούσης είναι 
αμελητέα, το ποσοστό επί τοις εκατό (%) της 
μηχανικής ενέργειας του σώματος Σ1 ακριβώς 
πριν από την κρούση που μεταβιβάστηκε στο 
σώμα Σ2 κατά την κρούση είναι ίσο με το πο-
σοστό επί τοις (%) εκατό της κινητικής ενέρ-
γειας του σώματος Σ1 ακριβώς πριν από την 
κρούση που μεταβιβάστηκε στο σώμα Σ2 κατά 
την κρούση. Επομένως, είναι:
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95.	 Α.	 Σωστή επιλογή είναι η β.

Οι αλγεβρικές τιμές 1  και 2  των ταχυτήτων 
των σφαιρών Σ1 και Σ2 αμέσως μετά την πρώ-
τη μεταξύ τους κρούση υπολογίζονται από τις 

σχέσεις:   
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Συνεπώς, αμέσως μετά την πρώτη κρούση με-
ταξύ των Σ1 και Σ2 η σφαίρα Σ1 ακινητοποιεί-
ται και η σφαίρα Σ2 αρχίζει να κινείται προς τα 
δεξιά, οπότε συγκρούεται με τη σφαίρα Σ3 με 
ταχύτητα  

2
.  

Οι αλγεβρικές τιμές 2  και 3  των ταχυτή-
των των σφαιρών Σ2 και Σ3 αντίστοιχα αμέσως 
μετά τη μεταξύ τους κρούση (δεύτερη συνολι-
κά) υπολογίζονται από τις σχέσεις:
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Συνεπώς, αμέσως μετά την κρούση της Σ2 με 
τη Σ3, η σφαίρα Σ3 αρχίζει να κινείται προς τα 
δεξιά, ενώ η σφαίρα Σ2 αρχίζει να κινείται προς 
τα αριστερά και συγκρούεται για δεύτερη φορά 
με ταχύτητα  2  με την ακίνητη σφαίρα Σ1. 
Έστω 1  και 2  οι ταχύτητες των σφαιρών 
Σ1 και Σ2 αντίστοιχα μετά τη δεύτερη μεταξύ 
τους κρούση (τρίτη συνολικά).
Επειδή οι σφαίρες Σ1 και Σ2 έχουν ίσες μάζες, 
ανταλλάσσουν ταχύτητες, οπότε αμέσως μετά 
τη δεύτερη μεταξύ τους κρούση η Σ1 θα αρχί-
σει να κινείται προς τα αριστερά με ταχύτητα 
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μέτρου    


1 2

1

3
,  ενώ η Σ2 θα ακινητο­

ποιηθεί  
2

0 .  

Επομένως, το συνολικό πλήθος των κρούσεων 
που πραγματοποιούνται είναι 3.

Β.	 Σωστή επιλογή είναι η β.

Έχουμε: 


3

1

3 3

2

1 1

2

1

2

1

2






m

m





ή  


3

1

1

2

1

2

4
2

3

2
3















m

m




  ή  

K
K
3

1

8== .

96.	 Σωστή επιλογή είναι η α.
Έστω υ1  η ταχύτητα της σφαίρας Σ1 πριν από 
την κρούση και 

1
,  2  οι αλγεβρικές τιμές 

των ταχυτήτων των σφαιρών Σ1 και Σ2 αντί-
στοιχα αμέσως μετά τη μεταξύ τους κρούση. 

Ισχύουν:   


 
11

1 2

1 2

1

m m

m m
 (1),

 


 
2

1

1 2

1

2m

m m
 (2).

Επειδή m m
1 2
< ,  από τις σχέσεις (1) και (2) 

προκύπτει ότι  
1

0  και  
2

0.  Συνεπώς, 
αμέσως μετά την κρούση της σφαίρας Σ1 με τη 
σφαίρα Σ2 η Σ1 κινείται προς τα αριστερά, ενώ 
η Σ2 κινείται προς τα δεξιά και μετά από λίγο 
συγκρούεται με τον λείο κατακόρυφο τοίχο με 
ταχύτητα  

2
.  Επειδή η κρούση της Σ2 με τον 

τοίχο είναι ελαστική, ανακλάται με ταχύτητα 
 2  μέτρου   2 2  ή, αλγεβρικά: υ′′2 = –υ′2.

Για να διατηρείται σταθερή η απόσταση 
μεταξύ των δύο σφαιρών μετά την κρού-
ση της Σ2 με τον τοίχο, θα πρέπει να ισχύει 

  
2 1

  ή, αλγεβρικά    
2 1

 ή    
2 1

  

ή  


 


2
1

1 2

1

1 2

1 2

1

m

m m

m m

m m
    ή  m

m
2

1

3== .

97.	 Σωστή επιλογή είναι η β.

Η αλγεβρική τιμή 1  της ταχύτητας του σώ-
ματος Σ1 αμέσως μετά την κρούση υπολογίζε-
ται από τον τύπο:

  


 
11

1 2

1 2

1

m m

m m
  ή     

1 1
0,2  (1).

Το ζητούμενο ποσοστό υπολογίζεται από τη 

σχέση:   






   

 

K K

K

1 1

1

100%
΄

ή  
 








1

2

1

2

1

2

100

1 1

2

1 1

2

1 1

2

m m

m

%

ή  
 








1

2

1

2

1

2
100%

ή, λόγω της σχέσης (1): π = 96%.

98.	 Σωστή επιλογή είναι η α.
Βλέπε θεωρία: «A. Κεντρική ελαστική κρού-
ση δύο σφαιρών».

99.	 Σωστή επιλογή είναι η γ.
Επειδή m m

2 1
>> ,  η αλγεβρική τιμή της ταχύ-

τητας του σώματος Σ1 αμέσως μετά την κρού-
ση είναι    

1 1
.  

Συνεπώς, η μεταβολή της ορμής του σώματος 
Σ1 εξαιτίας της κρούσης είναι: 
  

p p p
1 1 1
     ΄

ή, αλγεβρικά: p m m
1 1 1 1 1
  

ή  p m m
1 1 1 1 1
       ή  Δp1 = –2m1υ1.
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100.	 Σωστή επιλογή είναι η α.
Η αλγεβρική τιμή της ταχύτητας του σώματος 
Σ1 αμέσως μετά την κρούση υπολογίζεται από 
τη σχέση:

  


 
1

1 2

1 2

1

m m

m m
  ή   




 

1

2

1

2

1

1

1

1

m

m

m

m

 (1).

Επειδή m m
1 2
>> ,  μπορούμε να θεωρήσουμε 

ότι m

m

2

1

0→ ,  οπότε η εξίσωση (1) γράφεται:

  
1 1

.

Η μεταβολή της ορμής του σώματος Σ1 εξαι-
τίας της κρούσης υπολογίζεται από τη σχέση:

  

p p p
1 1 1
     ¬(μετά)

ή  p m m
1 1 11 1 1
     ή  Δp1 = 0.

101.	Α.	 Σωστή επιλογή είναι η β.
Έστω 1  και 2  οι αλγεβρικές τιμές των τα-
χυτήτων των σφαιρών Σ1 και Σ2 αντίστοιχα 
αμέσως μετά την κρούση τους.

Γ Σ2Σ1

h1

1

h2

Ο2Ο1

ʹυ1
ʹυ2

υ= 0 υ= 0

φ1 φ2

x1

w2

T

x2

Ζ Δ

 2

βαρU 0

Από το παραπάνω σχήμα προκύπτουν:


1

1

1

 x



  ή   
1

1 1

1

 


h

ή  h
1 1 1

1     (1)  και:


2

2

2

 x



  ή  
2

2 2

2

 



h

ή  h
2 2 2

1     (2).

Επειδή φ1 = φ2 και 
 

1 2
= , από τις σχέσεις (1) 

και (2) προκύπτει: h1 = h2. 

Από την Α.Δ.Μ.Ε. για την κίνηση της σφαίρας 
Σ1 μετά την κρούση από τη θέση Γ στη θέση Ζ 
που φαίνεται στο προηγούμενο σχήμα έχουμε:

E E 
       ή  1

2
1 1 11

2
m m gh 

ή   
1 1

2gh  (3).

Από την Α.Δ.Μ.Ε. για την κίνηση της σφαίρας 
Σ2 μετά την κρούση από τη θέση Γ στη θέση Δ 
που φαίνεται στο σχήμα έχουμε:

E E 
       ή  1

2
2 2

2

2 2
m m gh 

ή   
2 2

2gh  (4).

Από τις (3) και (4) έχουμε:

  
1 2

  ή     
11 2

ή   





m m

m m

m

m m

1 2

1 2

1

1

1 2

1

2
    ή  m

m
1

2

1
3

==  (5).

Β.	 Σωστή επιλογή είναι η γ.

Έστω υ1  το μέτρο της ταχύτητας του σώμα-
τος Σ1 ακριβώς πριν από την κρούση. Από την 
Α.Δ.Μ.Ε. για την κίνηση της σφαίρας Σ1 από 
τη θέση Α όπου αφέθηκε ελεύθερη μέχρι τη 
θέση Γ όπου έγινε η κρούση έχουμε: 
E E      

ή  K U K U     

ή  0
1

2
0

1 1 1

2  m g m    ή  
1

2 g  (6).
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Ισχύει  


 
2

1

1 2

1

2m

m m
 ή, λόγω των (5) και 

(6):  
2

2

2

g
 (7).

Η συνισταμένη των δυνάμεων που ασκείται 
στη σφαίρα Σ2 αμέσως μετά την κρούση δρα 
ως κεντρομόλος δύναμη. Επομένως, είναι:

F F    ή  T m g
m 


2

2 2

2


ή  T m g
m 


2

2 2

2


  ή, λόγω των (5) και (7): 

Τ = 4,5m1g.

102.	 Σωστή επιλογή είναι η α. 
Έστω υ το μέτρο της ταχύτητας της σφαίρας 
Σ2 στο ανώτερο σημείο Δ της κυκλικής τροχιάς 
που διαγράφει μετά την κρούση.

Γ Σ2Σ1

Ο2Ο1

ʹυ1
ʹυ2

Δυ

Σ2

w2

T

βαρU 0





Οι δυνάμεις που ασκούνται  στη σφαίρα Σ2 στο 
σημείο Δ είναι: το βάρος της  

w m g
2 2
=  και η 

τάση του νήματος 


T.  Η συνισταμένη των δυ-
νάμεων αυτών δρα ως κεντρομόλος δύναμη. 
Επομένως, είναι:

F F    ή  T m g
m 

2

2

2


ή  T
m

m g 2

2

2




 (1).

Για να εκτελέσει η σφαίρα Σ2 ανακύκλωση 
μετά την κρούση, θα πρέπει να φτάσει στο Δ 
με το νήμα τεντωμένο. 

Συνεπώς, θα πρέπει να ισχύει T ≥ 0  ή, λόγω 

της (1): m
m g

2

2

2
0




    ή  m
m g

2

2

2






ή    g  (2).

Από τη (2) προκύπτει ότι το μέτρο της ταχύ-
τητας της σφαίρας Σ2 στο σημείο Δ στην περί-
πτωση που μόλις εκτελεί ανακύκλωση είναι:

  g  (3).

Για να υπολογίσουμε το μέτρο 2  της ταχύ-
τητας της σφαίρας Σ2 αμέσως μετά την κρού-
ση, εφαρμόζουμε την Α.Δ.Μ.Ε. για τις θέσεις 
Γ και Δ της κυκλικής τροχιάς που διαγράφει 
η Σ2 μετά την κρούση, θεωρώντας ως επίπεδο 
μηδενικής βαρυτικής δυναμικής ενέργειας το 
οριζόντιο επίπεδο που διέρχεται από τη θέση Γ. 

Έχουμε: E E     

ή  K U K U
2 2 2 2            

ή  1

2
0

1

2
2

2 2

2

2 2

2
m m m g        ή, λόγω της 

(3): 1

2

1

2
2

2

2   g g    ή   
2

5g.

Από τον τύπο που δίνει την αλγεβρική τιμή της 
ταχύτητας της σφαίρας Σ2 αμέσως μετά την 
κρούση έχουμε:
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 


 
2

1

1 2

1

2m

m m
  ή  5

2
1

1 2

1
g

m

m m
 




ή  
1

2 5 g  (4).

Γ Σ2Σ1

Ο2Ο1

υ1
υ2 = 0

υ0

A

βαρU 0=

 

Εφαρμόζουμε την Α.Δ.Μ.Ε. για την κίνηση 
της σφαίρας Σ1 πριν από την κρούση από τη 
θέση Α στη θέση Γ. Έχουμε:

E E 
       ή  1

2

1

2
0

1 0

2

1 1 1

2
m m g m   

ή   
0 1

2
2  g   ή λόγω (4) 

0
18 g

ή  0 3 2g��υ .

103.	 Α.	 Σωστή επιλογή είναι η α.

Έστω 2  το μέτρο της ταχύτητας της σφαίρας 
Σ2 αμέσως μετά την κρούση. Από την Α.Δ.Ο. 
για το σύστημα των δύο σφαιρών κατά την 
κρούση, θεωρώντας θετική τη φορά της ταχύ-
τητας υ

1
,  έχουμε:  p p       ΄

ή  m m m m
1 1 2 2 1 11 2 2
       

ή  m m
1 1 1 1

3 0 5   ,     m m
1 1 1 22

1 25 3,  

ή    
2 1

0 25, .

Η ολική κινητική ενέργεια του συστήματος 
των δύο σφαιρών ακριβώς πριν από την κρού-

ση είναι: K m m      1

2

1

2
1 1

2

2 2

2

ή  K m    
7

8
1 1

2
.

Η ολική κινητική ενέργεια του συστήματος 
των δύο σφαιρών αμέσως μετά την κρούση 

είναι: K m m       
1

2

1

2
1 1

2

2 2

2

΄  

ή  K m    
7

8
1 1

2
.΄

Επειδή K K       ,΄  η κρούση είναι 
ελαστική.

Β.	 Σωστή επιλογή είναι η α.
Το ζητούμενο ποσοστό υπολογίζεται από τον 

τύπο:   






   

 

K K

K

2 2

2

100%
΄

ή  
 








1

2

1

2

1

2

100
2 2

2

2 2

2

2 2

2

m m

m

%

ή    


  

2

2

2

2

2

2
100%

ή  
 


     

 


0 25 0 5

0 5

100
1

2

1

2

1

2

, ,

,

%

ή  π = –75%.

104.	 Σωστή επιλογή είναι η α.
Το σώμα Σ1 κινούμενο με ταχύτητα μέτρου υ1 
συγκρούεται μετωπικά και πλαστικά με το ακί-
νητο σώμα Σ2. Από την Α.Δ.Ο. για το σύστημα 
των δύο σωμάτων κατά την κρούση έχουμε:
 

p p�� ���� �� ����( ) ( )
� ΄   ή  m m m

1 1 1 2
   

ή  


1

1

1 2



m

m m
 (1),
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όπου υ το μέτρο της ταχύτητας του συσσωμα-
τώματος αμέσως μετά την κρούση. Το ποσο-
στό επί τοις εκατό (%) της κινητικής ενέργειας 
του σώματος Σ1 ακριβώς πριν από την κρούση 
που μετατρέπεται σε θερμότητα εξαιτίας της 
κρούσης υπολογίζεται από τον τύπο: 


1

100


   

 

K K

K

   

 

%
΄

ή  
1

1 1

2

1 2

1 1

2

1

2

1

2

1

2

100
  


m m m

m

 



2

%

ή  
1

1 2

1 1

2

1 100   
















m m

m




%   

ή, λόγω της (1): 


1

1 2

1

1

2

1 2

2
1 100   

 











m m

m

m

m m

%

ή  
1

2

1 2

100


m

m m
%  (3).

Όπως φαίνεται από τη σχέση (3), το ποσοστό 
επί τοις εκατό (%) της κινητικής ενέργειας του 
σώματος Σ1 ακριβώς πριν από την κρούση που 
μετατρέπεται σε θερμότητα κατά την κρούση 
εξαρτάται μόνο από τις μάζες m1 και m2 των 
δύο σωμάτων που συγκρούονται. 
Άρα το ποσοστό είναι το ίδιο και στις δύο πε-
ριπτώσεις, δηλαδή: Π2 = Π1.

105.	 Σωστή επιλογή είναι η α.
Για να παραμείνει ακίνητο το συσσωμάτωμα 
μετά την κρούση, πρέπει τα συγκρουόμενα 
σώματα ακριβώς πριν από την κρούση να κι-
νούνται προς αντίθετες κατευθύνσεις. Έστω 



υ1  και υ2  οι ταχύτητες των σωμάτων με μά-
ζες m και 4m αντίστοιχα ακριβώς πριν από την 
κρούση.

(+)

m 4m

υ1 υ2

5m

υ= 0

ΠΡΙΝ ΜΕΤΑ

Από την Α.Δ.Ο. για το σύστημα των δύο σω-
μάτων, θεωρώντας θετική τη φορά της ταχύ-
τητας του σώματος μάζας m ακριβώς πριν από 
την κρούση, έχουμε:  

p p�� ���� �� ����( ) ( )
� ΄

ή    

p p p
1
 

2
  ή  m m 

1 2
4 0    ή   

1 2
4  

ή   
2

1

4
  (1).

Η μηχανική ενέργεια που μετατρέπεται σε 
θερμότητα κατά την κρούση υπολογίζεται από 
τον τύπο: E K K        ΄

ή  E m m    1

2

1

2
4 0

1

2

2

2   ή, λόγω της 

(1): E m m 
  





1

2

1

2
4

4
1

2 1

2

ή  E m m 
 1

2

1

2 4
1

2 1

2

ή  E m  





1

2
1

1

4
1

2   ή  ΔE K5
4

.μηχ

106.	 Σωστή επιλογή είναι η β.
Έστω υ1  η ταχύτητα και K1 η κινητική ενέρ-
γεια του αυτοκινήτου B ακριβώς πριν από την 
κρούση του με το αυτοκίνητο Α. Είναι:

K m
1 1

21

2
   (1).

Έστω υ2  η ταχύτητα και K2 η κινητική ενέρ-
γεια του συσσωματώματος που προκύπτει από 
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την πλαστική κρούση του αυτοκινήτου Β με  

το αυτοκίνητο Α. Είναι K M m
2 2

21

2
    (2).

Σύμφωνα με τα δεδομένα της άσκησης, ισχύει:

K K
2 1

1

3
=  ή, λόγω των (1) και (2):

1

2

1

3

1

2
2

2

1

2
M m m      ή  

2

2 1

2

3


 
m

M m
 (3).

Από την Α.Δ.Ο. για το σύστημα των αυτοκινή-
των Α και Β κατά την κρούση έχουμε:
 

p p�� ���� �� ����( ) ( )
� ΄   ή  m M m 

1 2
  

ή  m m
2

1

2 2

2

2      ή, λόγω της (3):

m M m
m

M m

2

1

2 1

2

3


  
 

2

ή  m
M m 

3
  ή  M m= 2   ή  m

M
==
1
2

.

107.	 Σωστή επιλογή είναι η γ.
Από τη μεθοδολογία Γ1 γνωρίζουμε ότι το πο-
σοστό επί τοις εκατό (%) της κινητικής ενέρ-
γειας του σώματος Σ1 ακριβώς πριν από την 
κρούση που μετατρέπεται σε θερμότητα εξαι-
τίας της κρούσης υπολογίζεται από τον τύπο:

 


m

m m

2

1 2

100%   ή  0 9
2

1 2

, 


m

m m

ή  0 1 0 9
2 1

, ,m m=   ή  m
m
2

1

9== .

108.	 Α.	 Σωστή επιλογή είναι η γ.
Έστω p  η ορμή του συσσωματώματος αμέ-
σως μετά την κρούση. 
Από την Α.Δ.Ο. για το σύστημα των δύο σφαι-
ρών κατά την κρούση έχουμε:
 

p p�� ���� �� ����( ) ( )
� ΄   ή    

p p p
1
 

2

ή    

p p p
1
   2

1
  ή   

p p 
1
 (1).

Σύμφωνα με τη σχέση (1) το συσσωμάτωμα 

μετά την κρούση αποκτά αντίθετη ορμή από 
την ορμή που είχε το σώμα Σ1 ακριβώς πριν 
από την κρούση. 
Έστω m1, m2 = m1 οι μάζες και υ1, υ2 τα μέτρα 
των ταχυτήτων των σωμάτων Σ1 και Σ2 αντί-
στοιχα ακριβώς πριν από την κρούση. Έχουμε: 
 

p p
2 1

2    ή   

p p
2 1

2=

ή  m m
2 2 1 1

2    ή   
2 1

2  (2).

Έστω υ το μέτρο της ταχύτητας του συσσωμα-
τώματος αμέσως μετά την κρούση. Σύμφωνα 

με την (1) ισχύει:  

p p=
1

  ή  m m m
1 2 1 1
      

ή    1

2
 (3).

(+)υ1

p1

υ2

p2

υ

p

m2+m1m1 m2

ΠΡΙΝ ΜΕΤΑ

Η μεταβολή της ορμής της σφαίρας Σ1 εξαιτίας 
της κρούσης υπολογίζεται από τη σχέση:

  

p p p
1 1 1
     ΄   ή, θεωρώντας θετική τη 

φορά της ορμής p
1
:  p m m

1 1 1 1
   

ή, λόγω της (3): p
m

1

1 1
3  

2

ή  
� �p p1 1

3
2

.Δ

Β.	 Σωστή επιλογή είναι η α.
Το ζητούμενο ποσοστό υπολογίζεται από τη 

σχέση:   

 

  

 




100%

΄

ή  





 




1

2

1

2

1

2

100
1 2

2

1 1

2

2 2

2

m m

m m

%
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ή   
 




2
100

2

1

2

2

2
%   ή, λόγω των (2) και (3): 

π = 10%.

109.	Α.	 Σωστή επιλογή είναι η β.
Έστω υ το μέτρο της ταχύτητας του συσσωμα-
τώματος αμέσως μετά την κρούση.

(+)υ1 υ

m2+m1m1 m2

υ2 = 0

ΠΡΙΝ ΜΕΤΑ

Από την Α.Δ.Ο. για το σύστημα των δύο σω-
μάτων κατά την κρούση έχουμε:
 

p p�� ���� �� ����( ) ( )
� ΄   ή  m m m

1 1 1 2
   

ή    1

4
 (1).

Το ζητούμενο ποσοστό απώλειας της κινητι-
κής ενέργειας εξαιτίας της κρούσης υπολογί-

ζεται από τον τύπο:  



 
 




1

100%

ή  
 




  


1

2

1

2

1

2

100

1

2

1 1

2

1 1

2

2
m m

m

m

%

ή   


 










 m m

m

1 2

1 1

2

1 100%

ή, λόγω της (1): π = 75%. 

Β.	 Σωστή επιλογή είναι η β.

Είναι   

p p p
1 1 1
     ΄

ή, αλγεβρικά: p m m
1 1 1 1
    

ή, λόγω της (1): p m1 1 1
3
4

.Δ υ

110.	 Σωστή επιλογή είναι η γ.
Έστω p

1
 και p

2
 οι ορμές των σωμάτων Σ1 

και Σ2 ακριβώς πριν από την κρούση και p  η 
ορμή του συσσωματώματος αμέσως μετά την 
κρούση. Είναι  

p p
1 2
  .  Από την Α.Δ.Ο. για 

το σύστημα των δύο σωμάτων κατά την κρού-
ση έχουμε: 

 

p p�� ���� �� ����( ) ( )
� ΄   ή    

p p p
1 2
 

ή       

p p p
2 2

  ή  


p = 0.

Συνεπώς, το συσσωμάτωμα αμέσως μετά την 
κρούση ακινητοποιείται, δηλαδή η κινητική 
του ενέργεια γίνεται K    0.΄  Το ζητού-
μενο ποσοστό υπολογίζεται από τη σχέση:

    

 




   

 

 


100%

΄

ή    

 

 











 

 
1 100




%

΄   ή  π = 100%.

111.	 Α.	 Σωστή επιλογή είναι η β.

1ος τρόπος:

Έστω υ το μέτρο της ταχύτητας του συσσωμα-
τώματος αμέσως μετά την κρούση.

(+)υ1 υ

m2+m1m1 m2

υ2 = 0

ΠΡΙΝ ΜΕΤΑ

Από την Α.Δ.Ο. για το σύστημα των δύο σω-
μάτων κατά την κρούση θεωρώντας θετική τη 
φορά της ταχύτητας υ1 έχουμε:
 

p p   ( ) ( )
 ΄   ή  m m m

1 1 1 2
   

ή   

m

m m

1

1 2

1
 (1).
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Η μεταβολή της ορμής της σφαίρας Σ2 εξαι-
τίας της κρούσης υπολογίζεται από τον τύπο
  

p p p
2 2 2
     ΄  ή, αλγεβρικά: 

p m
2 2

0      ή  p m
2 2
  

ή  p m
2 2
    ή  0 8

1 1 2
, m m   

ή    0 8
1

2

1

, m

m
 (2).

Από τις σχέσεις (1) και (2) έχουμε:
m

m m

m

m

1

1 2

1

1

2

1

0 8


 

,   ή  m m
2 1

4=  (3).

Από την (1), λόγω της (3), προκύπτει:


 1

5
 (4).

Η μεταβολή της ορμής της σφαίρας Σ1 εξαι-

τίας της κρούσης υπολογίζεται από τη σχέση

  

p p p
1 1 1
     ΄  ή, αλγεβρικά 

p m m
1 1 1 1
    ή, λόγω της (4):

p m
1 1 1
  4

5
   ή  Δp = –0,8m1υ1.

2ος τρόπος:

Επειδή σε κάθε κρούση διατηρείται η ορμή του 
συστήματος των σωμάτων που συγκρούονται, 
έχουμε:  

p p�� ���� �� ����( ) ( )
� ΄   ή     

p p p p
1 2 1 2
       

ή         p p p p
1 1 2 2

  ή    

p p
1 2
 

ή, αλγεβρικά  p p
1 2
   (5).

Επειδή το σώμα Σ2 είναι αρχικά ακίνητο, αμέ-
σως μετά την κρούση θα κινηθεί προς την ίδια 
φορά με την ταχύτητα υ

1
.  

Συνεπώς, θεωρώντας θετική τη φορά της τα-
χύτητας υ1  η αλγεβρική τιμή ∆p

2
 της μεταβο-

λής της ορμής του Σ2 εξαιτίας της κρούσης θα 
είναι θετική. Επομένως:  p p

2 2
 

ή  p m
2 1 1
 0,8   (6).

Από την (5) λόγω της (6) προκύπτει:
Δp m1 1 10 8= − , υ .

Β.	 Σωστή επιλογή είναι η β.

Το ζητούμενο ποσοστό υπολογίζεται από τον 

τύπο     

 




   

 

 


100%

΄  και σύμ-

φωνα με τη μεθοδολογία Γ1 είναι:

 


m

m m

2

1 2

100%   ή, λόγω της (3): π = 80%.

112.	 Α.	 Σωστή επιλογή είναι η γ.
Σύμφωνα με την εκφώνηση της άσκησης, 

ισχύει: K K K    64

100
΄  

ή  K K  36

100
΄  

ή  1

2

36

100

1

2
1

2

0

2
m m     ή   

1 0
0 6 ,  (1).

Αν θεωρήσουμε ως θετική τη φορά προς τα 
πάνω, η αλγεβρική τιμή της μεταβολής της ορ-
μής της σφαίρας εξαιτίας της κρούσης της με 
το δάπεδο υπολογίζεται ως εξής:

  p p p  ΄   ή  p m m    
1 0

  

ή  p m    
1 0

  ή, λόγω της (1): 

p m 1,6
0

   ή  p m1 6 0, .Δ υ

Β.	 Σωστή επιλογή είναι η β.

Οι δυνάμεις που ασκούνται στη σφαίρα κατά 
τη διάρκεια της κρούσης με το δάπεδο είναι: 
το βάρος της w  και η δύναμη 



N  που δέχεται 
από το δάπεδο η οποία δεν παραμένει σταθερή 
κατά τη διάρκεια της κρούσης. 
Έστω N  το μέτρο της μέσης δύναμης που 
ασκείται στη σφαίρα από το δάπεδο κατά τη 
διάρκεια της κρούσης με αυτό.



Κεφάλαιο 1ο: Κρούσεις

15

υ0 υ1

w

N

(+)

Η μέση συνισταμένη δύναμη που ασκείται στη 
σφαίρα κατά τη διάρκεια της κρούσης με το 

δάπεδο υπολογίζεται από τη σχέση  






F
p

t


ή, αλγεβρικά: 


F
m

t
 1 6

0
, 

ή  N mg
m

t
  1 6

0
, 


  ή  N mg m
t

1 6 0, .υ
Δ

113.	 Α.	 Σωστή επιλογή είναι η α.
Έστω 2  η αλγεβρική τιμή της ταχύτητας 

του Σ2 αμέσως μετά την κρούση. Έχουμε:  

 


 
2

1

1 2

1

2m

m m
  ή    

2 1

2

3
 (1).

Α Γ

(+)

m2

ʹυ2

Α Γ

m2

M

υ2σ

Το σώμα Σ2 αρχίζει να κινείται πάνω στη σανί-
δα με ταχύτητα  

2
.  

Έστω  2  η κοινή ταχύτητα που αποκτούν 
το σώμα Σ2 και η σανίδα τη χρονική στιγμή 
στην οποία το σώμα Σ2 σταματά να κινείται 
σε σχέση με τη σανίδα. Από την Α.Δ.Ο. για το 
σύστημα σώμα Σ2

 - σανίδα έχουμε:
 p p         ή  m m M

2 2 2 2
     

ή   2 2

1

2
    ή λόγω της (1):  2 1

1

3
  (2).

Επειδή η κρούση του σώματος Σ1 με το σώμα 
Σ2 είναι ελαστική, κατά τη διάρκεια της κρού-
σης δεν εκλύεται θερμότητα. 
Έστω Q η θερμότητα που εκλύεται κατά την 
ολίσθηση του σώματος Σ2 πάνω στη σανίδα, 
λόγω της τριβής ολίσθησης που ασκείται στο 
Σ2 από αυτήν, από τη χρονική στιγμή αμέσως 
μετά την κρούση μέχρι τη χρονική στιγμή 
στην οποία το σώμα Σ2 σταματά να κινείται σε 
σχέση με τη σανίδα. Έχουμε:

Q E E  

ή  Q m m M   
1

2

1

2
2 2

2

2 2

2  

ή, λόγω των (1) και (2):

Q m m 1

2
2

4

9

1

2
4

9

1

2

1

2 

ή  Q m 





1

2

8

9

4

9
1

2   ή  Q m 4

9

1

2
1

2  (3).

Επειδή η κινητική ενέργεια του σώματος Σ1 ακρι-

βώς πριν από την κρούση είναι  K m
1 1

21

2
  ,  

από την (3) προκύπτει: Q K=
4

9
1
.

Β.	 Σωστή επιλογή είναι η β.
Έστω υ2  η ταχύτητα του συσσωματώματος 
που προκύπτει αμέσως μετά την πλαστική 
κρούση του σώματος Σ1 με το σώμα Σ2 και υ  
η κοινή ταχύτητα που αποκτούν το συσσω-
μάτωμα και η σανίδα τη χρονική στιγμή στην 
οποία το συσσωμάτωμα σταματά να κινείται 
σε σχέση με τη σανίδα.
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(I)

(II)

(III)

Σ
1

Σ
2

+

Α Γ

(+)

Α Γ

υ

Σ
2

Α Γ

υ
2

Σ
1

υ
1

Σ
1

Σ
2

+
M

Από την Α.Δ.Ο. για το σύστημα των τριών 
σωμάτων για τα στιγμιότυπα (I) και (III) που 
φαίνονται στο παραπάνω σχήμα έχουμε:
 p p         ή  m m m M

1 1 1 2
    

ή  m m 
1

5   ή    1

5
 (4).

Το ποσό θερμότητας Qʹ που εκλύεται από τη 
χρονική στιγμή ακριβώς πριν από την κρούση 
του σώματος Σ1 με το σώμα Σ2 μέχρι τη χρονι-
κή στιγμή στην οποία το συσσωμάτωμα απο-
κτά κοινή ταχύτητα με τη σανίδα υπολογίζεται 
από τον τύπο:   Q E E 

ή       Q m m m M
1

2

1

2
1 1

2

1 2
 2

ή     Q m m
1

2

1

2
5

1

2 2   ή, λόγω της (4):

   Q m m
1

2

1

2
5

25
1

2 1

2




ή    





Q m
1

2
1

1

5
1

2

ή    Q m
4

5

1

2
1

2   ή  �� ��Q K4
5 1.

114.	 A.	 Σωστή επιλογή είναι η β.
Έστω υΓ το μέτρο της ταχύτητας του σώματος 

Σ2 στο ανώτερο σημείο Γ της κυκλικής τροχιάς 
που διαγράφει μετά την κρούση.

Ο

Α

Γ



T

Σ2

ʹυ2

w2

Σ2
βαρU 0

υΓ

Οι δυνάμεις που ασκούνται στο σώμα Σ2 στο 
ανώτερο σημείο της τροχιάς του είναι: το βά-
ρος του  

w m g
2 2
=  και η τάση του νήματος 



T.  
Η συνισταμένη των δυνάμεων αυτών δρα ως 
κεντρομόλος δύναμη. Επομένως, είναι:

F F    ή  T m g
m 

2

2

2



ή  T
m

m g 2

2

2





 (1).

Για να εκτελέσει το Σ2 ανακύκλωση μετά την 
κρούση, θα πρέπει να φτάσει στο σημείο Γ με 
το νήμα τεντωμένο. Συνεπώς, θα πρέπει να 
ισχύει T ≥ 0  ή, λόγω της (1): 

m
m g

2

2

2
0





    ή  m
m g

2

2

2







ή    g  (2).

Από τη (2) προκύπτει ότι το μέτρο της ταχύ-
τητας του σώματος Σ2 στο σημείο Γ στην πε-
ρίπτωση που μόλις εκτελεί ανακύκλωση είναι 
  g  (3).
Για να υπολογίσουμε το μέτρο 2  της ταχύ-
τητας του σώματος Σ2 αμέσως μετά την κρού-
ση, εφαρμόζουμε την Α.Δ.Μ.Ε. για τις θέσεις 
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Α και Γ της κυκλικής τροχιάς που διαγράφει 
το σώμα Σ2 μετά την κρούση, θεωρώντας ως 
επίπεδο μηδενικής βαρυτικής δυναμικής ενέρ-
γειας το οριζόντιο επίπεδο που διέρχεται από 

τη θέση Α. Έχουμε: E E     

ή      2 2 2 2         U U

ή  1

2
0

1

2
2

2 2

2

2

2

2
m m m g        ή, λόγω της 

(3): 1

2

1

2
2

2

2   g g    ή   
2

5g.

Για την αλγεβρική τιμή της ταχύτητας της 

σφαίρας Σ2 αμέσως μετά την κρούση έχουμε: 

 


 
2

1

1 2

1

2m

m m
  ή  5

2
1

1 2

1
g

m

m m
 




ή  1 2 5g��υ  (4).

Β.	 Σωστή επιλογή είναι η α.
Έστω υ το μέτρο της ταχύτητας του συσσω-
ματώματος αμέσως μετά την κρούση. Από 
την Α.Δ.Ο. για το σύστημα των δύο σωμάτων 
κατά την κρούση έχουμε:
 

p p�� ���� �� ����( ) ( )
� ΄   ή  m m m

1 1 1 2
      ή 

λόγω της (4): m g m·2 5 4     ή   
5

2

g
.

Έστω υ2 το μέτρο της ταχύτητας του συσσω-
ματώματος τη χρονική στιγμή στην οποία το 
νήμα σχηματίζει γωνία   60  με την αρχική 
κατακόρυφη θέση του για πρώτη φορά μετά 
την κρούση.

φ

Ο

υΑ



Δ

h

x



βαρU 0

m2+m1

T

wx

υ2

w

wyφ

βαρU 0

Από την Α.Δ.Μ.Ε. για την κίνηση του συσσω-
ματώματος μεταξύ των θέσεων Α και Δ που 
φαίνονται στο προηγούμενο σχήμα έχουμε:
E E         ή  K U K U     

ή  1

2

1

2
0

1 2 1 2 2

22
m m m m     

                                       m m gh
1 2

ή   
2

2 2
2  gh

ή  
2

2

2

5

2
2







  g

g x




ή   
2

2 5

4
2   g

g


 

ή  
2

2 5

4
2 1

1

2
  





g
g



   ή  
2

2

4
 g  (5).

Η συνισταμένη των δυνάμεων που ασκούνται 

στο συσσωμάτωμα στη θέση Δ κατά τη διεύ-
θυνση της ακτίνας δρα ως κεντρομόλος δύνα-
μη. Επομένως, είναι: F F 

ή  T w
m m

y
 

 1 2


2

2



ή  T m m g
m m

   
 

1 2

1 2


2

2



ή, λόγω της (5): T mg

m
g

 2

4
4





ή  Τ = 3mg.

115.	 Α.	 Σωστή επιλογή είναι η β.
Έστω υ1 το μέτρο της ταχύτητας του συσσω-
ματώματος που προκύπτει αμέσως μετά την 
πλαστική κρούση του βλήματος με το σώμα Σ1. 
Από την Α.Δ.Ο. για το σύστημα των 
δύο σωμάτων κατά την κρούση έχουμε: 
 

p p�� ���� �� ����( ) ( )
� ΄   ή  m m m 

0 1 1
  

ή   
1

0

2
  (1).
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Το συσσωμάτωμα αρχίζει να κινείται με ταχύ-
τητα υ1  αμέσως μετά την κρούση και το ελα-
τήριο συσπειρώνεται μέχρι τη χρονική στιγμή 
στην οποία το συσσωμάτωμα και το σώμα Σ2 
αποκτούν κοινή ταχύτητα υ.  Συνεπώς, το ελα-
τήριο θα αποκτήσει τη μέγιστη συσπείρωση 
∆

max
, όταν το συσσωμάτωμα και το σώμα Σ2 

αποκτήσουν κοινή ταχύτητα υ.

(I)

(II)

υ
1

m2

(+)

υ
2 = 0

0

υ υ

m1+m

m2m1+m

0

Το σύστημα συσσωμάτωμα-σώμα Σ2 είναι μο-
νωμένο. Από την Α.Δ.Ο. για το σύστημα συσ-
σωμάτωμα-σώμα Σ2 μεταξύ των στιγμιότυπων 
(I) και (II) της κίνησής τους που φαίνονται στο 
παραπάνω σχήμα έχουμε:
 

p p
II

    
 

 
 I

ή  m m m m m     1 1 1 2
 

ή  2 4
1

m m    ή    1

2

ή, λόγω της (1):   0

4
 (2).

Από την Α.Δ.Μ.Ε. για το σύστημα συσσωμά-
τωμα-σώμα Σ2 μεταξύ των στιγμιότυπων (I) 
και (II) του παραπάνω σχήματος έχουμε:

E E         ή

             U U 

ή  1

2

1

2
0

1 1

2

1 2

2
m m m m m      

                                     1

2

2

k 
max

ή  1

2
2

1

2
4

1

2
1

2 2 2

m m k
max

    

ή, λόγω των (1) και (2):  

m m k
max

 
0

2

0

2
2

4 8

1

2
   

ή  ��max
1
2 0

m
k

υΔ  (3).

Β.	 Σωστή επιλογή είναι η α.
Το ζητούμενο ποσοστό υπολογίζεται ως εξής: 




 
 1

2

1

2

100

2

0

2

k

m


max

%   ή, λόγω της (3):

π = 25%. 

116.	 Σωστή επιλογή είναι η β.
Οι ορμές ′p

1
 και ′p

2
 των σφαιρών Σ1 και Σ2 

αντίστοιχα αμέσως μετά την κρούση και η 
ορμή p

1
της σφαίρας Σ1 πριν από την κρούση 

φαίνονται στο παρακάτω σχήμα.

ʹp
1

ʹp
2

p
1

Σ1 Σ2

Σ1

Σ2

Η ορμή του συστήματος των δύο σφαιρών δια-
τηρείται σταθερή κατά την κρούση. Επομένως:
 

p p�� ���� �� ����( ) ( )
� ΄   ή    

p p p
1 1 2
     (1).

Σύμφωνα με την παραπάνω σχέση, από το  
διανυσματικό άθροισμα των ορμών  ′p

1
 και  

 ′p
2
 των σφαιρών μετά την κρούση προκύπτει  

η ορμή p
1
 της σφαίρας Σ1 πριν από την  

κρούση.
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φ

ʹp
1

ʹp
2

p
1

Επομένως, για το μέτρο της ορμής p
1
 της 

σφαίρας Σ1 πριν από την κρούση ισχύει:

p p p p p
1 1

2

2

2

1 2
2        (2),

όπου φ η γωνία που σχηματίζουν τα διανύσμα-
τα των ορμών  ′p

1
 και  ′p

2
.  

Από τη (2) έχουμε: 

p p p p p
1

2

1

2

2

2

1 2
2      

ή  m m m
1 1

2

1 1

2

2 2

2

          

                      2
1 1 2 2

m m  

ή  m m m
1

2

1

2

1

2

1

2

2

2

2

2       2
1 2 11 2

m m   

και επειδή m m
1 2
= ,  προκύπτει: 

     
1

2

1

2

2

2

11 2
2       (3).

Επειδή η κρούση είναι ελαστική, η κινητική 
ενέργεια του συστήματος διατηρείται σταθερή 
κατά την κρούση. Επομένως, είναι:

K K       ΄

ή  1

2

1

2

1

2
1 1

2

1 21

2

2

2
m m m    

ή    
1

2

1

2

2

2    (4).

Από τις (3) και (4) με αφαίρεση κατά μέλη προ­
κύπτει ότι 0 2

1 2
     και επειδή  

1
0  και 

 
2

0, έχουμε τελικά:   0   ή  � � �90 .

Άρα  
1 2

90     ή  φ2 = 60°.

117.	 Α.	 Σωστή επιλογή είναι η α.
Οι ορμές ′p

1
 και ′p

2
 των σφαιρών Σ1 και Σ2 

αντίστοιχα αμέσως μετά την κρούση και η 
ορμή p

1
 της σφαίρας Σ1 πριν από την κρούση 

φαίνονται στο παρακάτω σχήμα.
ʹp
1

ʹp
2

p
1

Σ1 Σ2

Σ1

Σ2

Η ορμή του συστήματος των δύο σφαιρών δια-
τηρείται σταθερή κατά την κρούση. Επομένως:
 

p p�� ���� �� ����( ) ( )
� ΄   ή    

p p p
1 1 2
     (1).

Σύμφωνα με τη σχέση (1), από το διανυσματι-

κό άθροισμα των ορμών  ′p
1

 και  ′p
2
 των σφαι-

ρών μετά την κρούση προκύπτει η ορμή p
1
 

της σφαίρας Σ1 πριν από την κρούση.

θ

ʹp
1

ʹp
2

p
1

Επομένως, για το μέτρο της ορμής p
1
 της 

σφαίρας Σ1 πριν από την κρούση ισχύει:

p p p p p
1 1

2

2

2

1 2
2        (2).

όπου θ η γωνία που σχηματίζουν τα διανύσμα-
τα των ορμών  ′p

1
 και  ′p

2
.  

Από τη (2) έχουμε:
p p p p p

1

2

1

2

2

2

1 2
2      

ή  m m m
1 1

2

1 1

2

2 2

2

          

                      2
1 1 2 2

m m  

ή  m m m
1

2

1

2

1

2

1

2

2

2

2

2    

                  � � �2
1 2 1 2

m m � � ����  (3).

Επειδή m m
1 2
=  και    2 90 ,  από την 

(3) προκύπτει:   
1

2

1

2

2

2    (4).

Από την (4) έχουμε: 1

2

1

2

1

2
1

2

1

2

2

2
m m m       

ή  � ��� ���� �� ����� � � �� .΄

Άρα η κρούση μεταξύ των σφαιρών είναι 
ελαστική.
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Β.	 Σωστή επιλογή είναι η β.

Το ζητούμενο ποσοστό είναι:

  



  

 

K

K

2

1

100%
΄

ή  



 


1

2

1

2

100
2 2

2

1 1

2

m

m

%   ή   


 

2

2

1

2
100%  (5).

Αναλύουμε τις ταχύτητες  1  και  2  στις συ-
νιστώσες που φαίνονται στο παρακάτω σχήμα.

υ1
Σ1 Σ2

Σ2

Σ1

φ
φ

ʹυ1

ʹυ1x

ʹυ1y

ʹυ2

ʹυ2x

ʹυ2y

φ

φ

Από την Α.Δ.Ο. για το σύστημα των δύο σφαι-
ρών στον άξονα ′y y,  θεωρώντας θετική τη 
φορά προς τα πάνω έχουμε:
 

p p
y y( ) ( )  ΄   ή  0

1 2
  m m

y y
 

ή    
1 2y y

  ή      
1 2

  ή    
11 2

.

Συνεπώς, από την (4) έχουμε: 

 
1

2

2

2
2    ή   


2

2 1

2

2
 (6).

Από την (5), λόγω της (6), προκύπτει ότι:

π = 50%.

118.	 A.	 Σωστή επιλογή είναι η α.
Ισχύει φ = θ. Η ορμή της σφαίρας διατηρείται 
στον άξονα ′y y.  Επομένως: 
 

p p
y y( ) ( )  ΄   ή  m m

y y
 

1 2


ή     
1 2

   ή   
1 2
 .

φ

φ

θ

θ

x ́ x

y ́

y υ2x

υ2y

υ1y

υ1x

F

υ1

υ2

Ο

Η κινητική ενέργεια της σφαίρας πριν από την 

κρούση είναι: K m  1

2
1

2
,  ενώ η κινητική 

της ενέργεια μετά την κρούση είναι:

  1

2
2

2
m΄   ή    1

2
1

2
m΄

ή    ΄ .

Άρα η κρούση της σφαίρας με τον τοίχο εί-
ναι ελαστική.

Β.	 Σωστή επιλογή είναι η α.
Η ορμή της σφαίρας μεταβάλλεται στον άξονα 
′x x. Η μεταβολή της ορμής της σφαίρας στον 

άξονα ′x x  εξαιτίας της κρούσης με τον τοίχο 
είναι:    

p p p
x x x
 

( ) ( ) ΄  ή, αλγεβρικά: 

p m m
x
     

2 1

ή  p m
x
 2

1
    ή  p m

x
 2

1

2
1



ή  p m
x
  

1
  ή  p mx 1 .Δ υ

119.	 Α.	 Σωστή επιλογή είναι η β.
Οι ορμές ′p

1
 και ′p

2
 των σφαιρών Σ1 και Σ2 

αντίστοιχα αμέσως μετά την κρούση και η 
ορμή p

1
της σφαίρας Σ1 πριν από την κρούση 

φαίνονται στο επόμενο σχήμα.



Κεφάλαιο 1ο: Κρούσεις

21

ʹp
1

ʹp
2

p
1

Σ1 Σ2

Σ1

Σ2

Η ορμή του συστήματος των δύο σφαιρών δια-
τηρείται σταθερή κατά την κρούση. Επομένως:
 

p p�� ���� �� ����( ) ( )
� ΄   ή    

p p p
1 1 2
     (1).

Σύμφωνα με τη σχέση (1), από το διανυσματι-

κό άθροισμα των ορμών  ′p
1

 και  ′p
2
 των σφαι-

ρών μετά την κρούση προκύπτει η ορμή p
1
 

της σφαίρας Σ1 πριν από την κρούση.

φ

ʹp
1

ʹp
2

p
1

Επομένως, για το μέτρο της ορμής p
1
 της 

σφαίρας Σ1 πριν από την κρούση ισχύει:

p p p p p
1 1

2

2

2

1 2
2        (2),

όπου φ η γωνία που σχηματίζουν τα διανύσμα-
τα των ορμών  ′p

1
 και  ′p

2
.  Ισχύει:

  2   ή  � � �60 .

Από τη (2) έχουμε:
p p p p p

1

2

1

2

2

2

1 2
2      

ή  m m m
1 1

2

1 11

2

2 2

2

          

                    � � �2
1 1 2 2

m m� � ����

ή  m m m m m
1

2

1

2

1

2

1

2

2

2

2

2

1 2 1 2
         

και επειδή m m
1 2
= ,  προκύπτει τελικά:

    
1

2

1

2

2

2

1 2
       (3).

Αν πολλαπλασιάσουμε την εξίσωση (3) με το 
1

2
m,  έχουμε:

1

2

1

2

1

2

1

2
1

2

1

2

2

2

11 2
m m m m         

ή  K K m           
1

2
1 2΄  (4).

Όπως φαίνεται από την (4), είναι:

K K�� ���� �� ����� � � �� ΄ .

Άρα η κρούση μεταξύ των δύο σφαιρών εί-
ναι ανελαστική.

Β.	 Σωστή επιλογή είναι η β.
Αναλύουμε τις ταχύτητες  1  και  2  στις συ-
νιστώσες που φαίνονται στο παρακάτω σχήμα.

υ1
Σ1 Σ2

Σ2

Σ1

θ
θ

ʹυ1

ʹυ1x

ʹυ1y

ʹυ2

ʹυ2x

ʹυ2y

θ

θ

Από την Α.Δ.Ο. για το σύστημα των δύο σφαι-
ρών στον άξονα ′y y,  θεωρώντας θετική τη 
φορά προς τα πάνω έχουμε:
 

p p
y y     ΄   ή  0

1 2
  m m

y y
 

ή    
1 2y y

  ή      
11 22

  ή    
1 2

.

Άρα από την (3) προκύπτει ότι: 2 1
3

3
.υ υ

Γ.	 Σωστή επιλογή είναι η β.
Το μέτρο της μεταβολής της ορμής της σφαί-
ρας Σ2 εξαιτίας της κρούσης είναι: 

  

p p p
2 2 2
     ή   

p p
2 2
    ή   

p p
2 2
 

ή  p m
2 2 2
    ή  p m

2 1

3

3
  .

Επειδή η ορμή του συστήματος των δύο σφαι-
ρών διατηρείται σταθερή κατά την κρούση, 
έχουμε: 



p  0   ή    



p p
1 2

0 

ή    

p p
1 2
    ή    

p p
1 2


ή  υ�p m1 1
3

3
.Δ
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120.	 Σωστή επιλογή είναι η β.
Έστω υ  η ταχύτητα του συσσωματώματος 
μετά την κρούση. Από την Α.Δ.Ο. για το σύ-
στημα των δύο σωμάτων στον άξονα ′x x  
έχουμε:  

p p
x x     ΄

ή  m m m
x1 1 1 2

      ή  
x

m s 8

5
/ .

υ1

υ2

m1

m2

υy

υx

υ

m2+m1

x ́ x
y ́

y 

Ο

Από την Α.Δ.Ο. για το σύστημα των δύο σω-
μάτων στον άξονα ′y y  έχουμε:
 

p p
y y     ΄

ή  m m m
y2 2 1 2

      ή  
y

m s 6

5
/ .

Το μέτρο της ταχύτητας υ  του συσσωματώ-
ματος αμέσως μετά την κρούση είναι:

   
x y

2 2   ή    2 m s/ .

Η κινητική ενέργεια του συσσωματώματος 
αμέσως μετά την κρούση προκύπτει:

K m m  1

2
1 2

2   ή  Κ = 10 J.

121.	 Α.	 Σωστή επιλογή είναι η β.
Έστω   η ταχύτητα του συσσωματώματος 
μετά την κρούση.

υ1

υ2

m1

m2

υΣ,y

υΣ,x
m2+m1x ́ x x ́ x

y y 
υΣ

y ́ y ́

Αναλύουμε την ταχύτητα   του συσσωμα-
τώματος στις συνιστώσες  ,x

 και  ,y
 που 

φαίνονται στο προηγούμενο σχήμα. Από την 
Α.Δ.Ο. για το σύστημα των δύο σωμάτων 
στον άξονα ′x x  έχουμε:
 

p p
x x     ΄   ή  m m m

x1 1 1 2
     ,

ή   
 ,x

 1

2
  ή   

 ,x


2
 (1).

Από την Α.Δ.Ο. για το σύστημα των δύο σω-
μάτων στον άξονα ′y y  έχουμε:
 

p p
y y     ΄   ή  m m m

y2 2 1 2
     ,

ή   
 ,y

 2

2
  ή    ,y

 3

2
 (2).

Το μέτρο της ταχύτητας   του συσσωματώ-
ματος αμέσως μετά την κρούση υπολογίζεται 

από τη σχέση:      
, ,x y

2 2   ή, λόγω των 
(1) και (2):    .

Η απώλεια της κινητικής ενέργειας του συ-
στήματος των δύο σωμάτων κατά την κρούση 
είναι: E K K        ΄

ή  E m m   1

2

1

2
1 1

2

2 2

2   1

2
1 2

2
m m 

ή  E m m     1

2

1

2
3

1

2

1

2

 1

2
2

1

2
m 

ή  E m 
1

2
.

Το ποσοστό επί τοις εκατό (%) της αρχικής 
κινητικής ενέργειας του συστήματος των δύο 
σωμάτων που μετατρέπεται σε θερμότητα 

κατά την κρούση είναι:  

 

 
 

E

K
100%

ή   

 



m

m m

1

2

1 1

2

2 2

21

2

1

2

100%

ή   


 m

m

1

2

1

2
2

100%   ή  π = 50%.
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Β.	 Σωστή επιλογή είναι η β. 
Η μεταβολή της ορμής του σώματος Σ1 
στον άξονα ′x x  εξαιτίας της κρούσης εί-

ναι:   

p p p
x x x1 1 1
     ΄  ή, αλγεβρικά: 

 p m m
x x1 1 1 1
  

,

ή  p m m
x1 1 1

2
 

   ή  p
m

x1

1

2
    (3).

Η μεταβολή της ορμής του σώματος Σ1 
στον άξονα ′y y  εξαιτίας της κρούσης εί-

ναι:   

p p p
y y y1 1 1
     ΄   ή, αλγεβρικά: 

 p m
y y1 1

0 
,

  ή  p m
y1 1

3

2
    (4).

p1xΔ

p1yΔ
p1Δ

Tο μέτρο ∆p
1
 της μεταβολής της ορμής του 

σώματος Σ1 εξαιτίας της κρούσης προκύπτει: 

  p p p
1

2 2

     1x 1y

ή, λόγω των (3) και (4): Δp1 = m1υ.

122.	 Σωστή επιλογή είναι η β.
Αναλύουμε τις ταχύτητες υ2  και υ  στις συνι-
στώσες που φαίνονται στο παρακάτω σχήμα.

x ́ x

m1

m2

υ1

υ2

υ2x

υ2y

y 

y ́

x ́ x

y 

y ́

ΠΡΙΝ

φ

φ

υ

m2+m1

υy

υx
x ́ x

y 

y ́

ΜΕΤΑ

θ

Από την Α.Δ.Ο. για το σύστημα των δύο σω-
μάτων στον άξονα ′x x,  θεωρώντας θετική τη 
φορά προς τα δεξιά, έχουμε:  

p p
x x     ΄

ή  m m m m
x1 1 2 2 1 2

      x

ή  4 5
1 2

m m m    

ή  4
3

2

5

2
1 2

     (1).

Από την Α.Δ.Ο. για το σύστημα των δύο σω-
μάτων στον άξονα ′y y,  θεωρώντας θετική τη 
φορά προς τα πάνω, έχουμε:  

p p
y y     ΄   

ή  m m m
y y2 2 1 2

   

ή  m m  
2

5   ή   2

2

5 3

2


ή   
2

5 3  (2).

Με αντικατάσταση της (2) στην (1) προκύπτει: 
 

1
2 5 , .  Ο ζητούμενος λόγος είναι:

K

K

m

m

1

2

1 1

2

2 2

2

1

2

1

2





  ή  K

K

m

m

1

2

2

2

4 2 5

5 3

  
 

, 



ή  K
K
1

2

1
3

== .



Απαντήσεις – Λύσεις θεµάτων

24

123.	 Σωστή επιλογή είναι η γ.
Έστω υ  η ταχύτητα του συσσωματώματος 
μετά την κρούση. Αναλύουμε την ταχύτητα υ0  
του βλήματος στις συνιστώσες που φαίνονται 
στο παρακάτω σχήμα.

υ0

M

m

(+)

M+m

υ

υ0y

υ0x

ΠΡΙΝ ΜΕΤΑ

φ

Από την Α.Δ.Ο. για το σύστημα των δύο σω-
μάτων στον άξονα ′x x,  θεωρώντας θετική τη 
φορά προς τα δεξιά, έχουμε: 
 

p p
x x     ΄   ή  m M m

x
 

0
  

ή  m m  
0

10  ή  0

2
10

ή   0

20
 (1).

Το ζητούμενο ποσοστό προκύπτει:

      

 




   

 

K K

K
100%

΄

ή    

 

 








 

 

 
1 100

K

K
%

΄

ή  



 

 














1

1

2

1

2

100

2

0

2

M m

m

%

ή  




 

























1

10
20

100

0

2

0

2

m

m
%   ή  π = 97,5%.

124.	 Σωστή επιλογή είναι η β.
Αναλύουμε την ταχύτητα υ0  στις συνιστώσες 
που φαίνονται στο παρακάτω σχήμα.

Ο

υ0

M

m

M+m

υ

υ0y

υ0x

φ

Ο

(I)

(II)

ʹυ = 0

ΠΡΙΝ ΜΕΤΑ

βαρ
U 0

Έστω υ  η ταχύτητα του συσσωματώματος 
μετά την κρούση. 
Από την Α.Δ.Μ.Ε. για την κυκλική κίνηση που 
εκτελεί το συσσωμάτωμα μετά την κρούση 
μεταξύ των θέσεων (I) και (II) που φαίνονται 
στο παραπάνω σχήμα έχουμε:

E E        ή  K U K U     

ή  1

2
0 0M m M m g      2



ή    2g.

Από την Α.Δ.Ο. για το σύστημα των δύο σω-
μάτων στον άξονα ′x x,  θεωρώντας θετική τη 
φορά προς τα δεξιά, έχουμε:
 

p p
x x     ΄   ή  m M m

x
 

0
  

ή  m M m  
0

     ή  m
M m


0

2
     

ή  
m g

M m g
10 2

2
2



  

ή  5m M m    ή  M
m

== 4.
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125.	 α.	 Έχουμε:

  


 
11

1 2

1 2

m m

m m
1

  ή  υ′1 = – 6 m/s  και

 


 
2

1

1 2

2m

m m
1

  ή  υ′2 = + 4 m/s.

β.	 Έχουμε:   

p p p
1 1 1
     ΄

ή    

p m m
1 1 1 1 1
    ή  p m m

1 1 11 1
  

1
  

ή  Δp1 = –16 kg m/s.

γ.	 Επειδή η ορμή του συστήματος των δύο 
σωμάτων διατηρείται σταθερή κατά την 
κρούση, ισχύει:   

p p
2 1
    ή    

p p
2 1
   

ή  �p m s
2

16� kg / .

Άρα F
p

t
2

2





  ή  F2 800= N.

δ.	 Σε κάθε ελαστική κρούση διατηρείται η 
κινητική ενέργεια του συστήματος των σω-
μάτων που συγκρούονται. Επομένως: 
K K       ΄

ή  K K K K
1 2 1 2            ΄ ΄

ή  K K K K
1 1 2 2            ΄΄

ή    K K
1 2

  ή  K
K

1

2

1.Δ
Δ

126.	 α.	 Επειδή η κρούση είναι ελαστική, 
έχουμε: 

  


 
1

1 2

1 2

m m

m m
1

  ή  υ′1 = + 1 m/s  και

 


 
2

1

1 2

2m

m m
1

  ή  υ′2 = + 6 m/s.

β.	 Έχουμε: E K  
2

ή  E K K      2 2΄

ή  E m   1

2
0

2

2

2
  ή  Εμετ = 36 J.

γ.	 Το ζητούμενο ποσοστό είναι:

 


 
 




2

1

100%

ή  


 
E

m
1

2

100

1 1

2

%   ή  π = 96%.

127.	 α.	 Έχουμε:   


 
1

1 2

1 2

m m

m m
1

ή    


 
1

1 2

1 2

m m

m m
1
  ή  m1 = 2 kg.

β.	 Είναι  


 
2

1

1 2

2m

m m
1

 και έχουμε:




 
 




2

1

100%   ή  



 


1

2

1

2

100
2 2

2

1 1

2

m

m

%

ή   
 

4
100

1 2

1 2

2

m m

m m

%   ή  π = 88,9%.

γ.	 Έχουμε:   

p p p
1 1 1
     ΄

ή    

p m m
1 1 1 1 1
  

ή  p m m
1 1 1 1 1
   

ή  Δp1 = –16 kg m/s   και   

p p
2 1
 

ή  Δp1 = +16 kg m/s.

δ.	 Όταν η μία από τις δύο σφαίρες είναι ακί-
νητη πριν από την κρούση, το ποσοστό επί 
τοις εκατό (%) της κινητικής ενέργειας που 
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μεταβιβάζεται από τη μια σφαίρα στην άλλη 
εξαρτάται μόνο από τις μάζες των δύο σφαι-
ρών και δίνεται από τη σχέση:

 
 

4
100

1 2

1 2

2

m m

m m

% .

Άρα και σε αυτήν την περίπτωση το ζητούμε-
νο ποσοστό είναι π = 88,9%.

128.	 α.	 Για τις αλγεβρικές τιμές των ταχυτή-
των των δύο σωμάτων αμέσως μετά την κρού-
ση ισχύουν:

  


 
1

1 2

1 2

m m

m m
1

 (1)  και   


 
2

1

1 2

2m

m m
1
 (2).

Επειδή οι ταχύτητες των δύο σωμάτων αμέ-
σως μετά την κρούση είναι αντίθετες, ισχύει 
   
2 1

 ή, λόγω των (1) και (2): 

2
1

1 2

1 2

1 2

m

m m

m m

m m
  


 

1 1
   ή  m

m
1

2

1
3

== .

β.	 Από τις σχέσεις (1) και (2) προκύπτουν: 

υ′1 = – 4 m/s  και  υ′2 = + 4 m/s.

γ.	 Το ζητούμενο ποσοστό είναι:

 



  

 




1

1

100%
΄   ή  




 


1

2

1

2

100
1 1

2

1 1

2

m

m

%

ή  π = 25%.

129.	 α.	 Έχουμε: K K
2 1    ΄

ή  1

2

1

2
2 2

2

1
m m  

1

2

ή  m
m

m m
m

2

1

1 2

2

1

2








 
1 1

2

ή  4
1

2

2

1 2

2 1

2

1 1

2m m

m m

m

 
    ή  4

1
1 2

1 2

2

m m

m m 
   

ή  m m m m
1 2

2

1 2
4  

ή  m m m m m m
1

2

2

2

1 2 1 2
2 4  

ή  m m m m
1

2

2

2

1 2
2 0     ή  m m

1 2

2

0     

ή  m m
1 2
=   ή  m2 = 1 kg.

β.	 Επειδή η κρούση είναι κεντρική και ελα-
στική με m m

1 2
= ,  ισχύει υ′2  = υ1 = 2 m/s.

γ.	 Η μεταβολή της ορμής του σώματος Σ2 
εξαιτίας της κρούσης είναι: 

  

p p p
2 2 2
     ΄

ή  p m m
2 2 2 2
  

2
  ή  p m

2 2 2
 

ή  �p
2
� 2 kg m/s.

Υπολογίζουμε τη χρονική διάρκεια της κρού-
σης από το μέτρο της μέσης δύναμης που 
ασκήθηκε στο σώμα Σ2 από το σώμα Σ1 κατά 

την επαφή τους: F
p

t
2

2



  ή  


t
p

 2

F
2

ή  Δt = 10–2 s.

130.	 α.	 Έχουμε:  


 
2

1

1 2

2m

m m
1

ή  m2 = 5 kg.

β.	 Έχουμε   


 
1

1 2

1 2

m m

m m
1
  ή    

1
16 m s/ .

Επομένως, έχουμε:   p m
1 1 1



ή    p m s
1

16 kg / , οπότε: �� ��p1 16 kgm/s.

γ.	 Έχουμε: E K  
2

ή  E m  
1

2
2 2

2   ή  Εμετ = 160 J.
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δ.	 Το ζητούμενο ποσοστό είναι:




 
 

K

K

1

1

100%

ή    






   

 

K K

K

1 1

1

100%
΄

ή  
 








1

2

1

2

1

2

100
1 1

2

1

1 1

2

m m

m

1

2

%

ή   


 








1

2

1

2
1 100%   ή  π = – 55,6%.

131.	 α.	 Οι αλγεβρικές τιμές 1  και 2  των 
ταχυτήτων των σφαιρών Σ1 και Σ2 αντίστοιχα 
μετά την κρούση είναι:

 


 


  
1

2

1 2

1 2

1 2

2m

m m

m m

m m
2 1

  ή  υ′1 = + 4 m/s 

και   


 


  
2

1

1 2

2 1

1 2

2m

m m

m m

m m
1 2

ή  υ′2 = +7 m/s.

β.	 Έχουμε: K K K
1 1 1
     ΄

ή  K m m
1 1 1

2

1 1

21

2

1

2
     ή  ΔΚ1 = – 20 J

και K K K
2 2 2
     ΄

ή  K m m
2 2 2

2

2 2

21

2

1

2
     ή  ΔK2 = + 20 J.

γ.	 Η μεταβολή της ορμής της σφαίρας Σ1 εξαι-
τίας της κρούσης είναι:   

p p p
1 1 1
     ΄   

ή  p m m
1 1 11 1
  

1
  ή  Δp1 = – 4 kg m/s.

Σε όλες τις κρούσεις ισχύει: 
 p p

2 1
    ή  Δp2 = + 4 kg m/s. 

132.	 α.	 Επειδή οι σφαίρες έχουν ίσες μάζες 
και η κρούση είναι κεντρική και ελαστική, θα 
ανταλλάσσουν ταχύτητες. 
Αν θεωρήσουμε ως θετική τη φορά της ταχύ-
τητας 



υ
1
,  έχουμε:

  
11 2

  ή  υ′1 = – 2 m/s  και

  
2 1

  ή  υ′2 = + 4 m/s.

β.	 Για το μέτρο F1 της μέσης δύναμης που 

ασκείται στη σφαίρα Σ1 από τη σφαίρα Σ2 κατά 

τη διάρκεια της κρούσης έχουμε: F
p

t
1

1�
�
�



ή  F
m m

t
1

1 1 1
 

1


  ή  F

1
1 200= . N.

γ.	 Για τη σφαίρα Σ1 έχουμε: 




1

1

1

100 
 




%

ή    


1

1 1

1

100


   

 

 


%

΄

ή  



1

1 1

2

1 1

2

1

2

1

2

1 100 


















m

m

%

ή   
1

1

2

1

2
1 100 









%   ή  π1 = – 75%.

Για τη σφαίρα Σ2 έχουμε: 




2

2

2

100 
 




%

ή    


2

2 2

2

100


   

 

 


%

΄

ή   
2

2

2

2

2
1 100 









%   ή  π2 = +300%.
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133.	 α.	 Για τις αλγεβρικές τιμές των ταχυτή-
των των δύο σωμάτων αμέσως μετά την κρού-
ση, θεωρώντας ως θετική τη φορά της ταχύτη-
τας υ1  έχουμε:

 


 


  
1

2

1 2

1 2

1 2

2m

m m

m m

m m
2 1

  ή  υ′1 = – 1 m/s 

και   


 


  
2

1

1 2

2 1

1 2

2m

m m

m m

m m
1 2

ή  υ′2 = + 14 m/s.

β.	 Η μεταβολή της ορμής κάθε σώματος εξαι-
τίας της κρούσης είναι:  

  

p p p
1 1 1
     ΄   ή    

p m m
1 1 1 1 1
  

ή  p m m
1 1 1 1 1
     ή  Δp1 = – 24 kg m/s 

και  p p
2 1
    ή  Δp2 = + 24 kg m/s.

γ.	 Έχουμε: 


 
 

K

K

1

1

100%

ή  
 








1

2

1

2

1

2

100

1 1

2

1 1

2

1 1

2

m m

m

%

ή   


  

1

2

1

2
1 100%   ή  π = 96%.

134.	 α.	 Αμέσως μετά την κρούση ισχύει:

Κ2(μετά) = 0  ή   
2

0.

Επομένως:  


 


  
2

1

1 2

2 1

1 2

2m

m m

m m

m m
1 2

ή  0
2

1

1 2

2 1

1 2




 


m

m m

m m

m m
 

1 2

ή  m m

m m

m

m m

2 1

1 2

1

1 2

1

2


 


 
2

ή  m m
1 2

2

2 1
2





 
  ή  m1 = 1 kg.

β.	 Έχουμε:  


 


  
1

2

1 2

1 2

1 2

2m

m m

m m

m m
2 1

ή    
1

9 m/s,  οπότε 1 9 m/sυ .

γ.	 Επειδή κατά τη διάρκεια της επαφής των 
δύο σωμάτων η δύναμη με την οποία αλληλε-
πιδρούν δεν έχει σταθερό μέτρο, το έργο της 
δύναμης που ασκείται στο Σ1 από το Σ2 υπολο-
γίζεται με εφαρμογή του Θεωρήματος Έργου-
Κινητικής Ενέργειας για το Σ1. Είναι:

Κ1(μετά) – Κ1(πριν) = W
F
1

ή  W m m
F
1

1

2

1

2
1 1

2

1 1

2     ή  WF J
1
36= .

135.	 α.	 Έστω 1  και 2  οι ταχύτητες των 
σφαιρών Σ1 και Σ2 αμέσως μετά τη μεταξύ 
τους κρούση. Έχουμε: 

  


 
1

1 2

1 2

m m

m m
1

  ή   
1

0   και

  


 
2

1

1 2

2m

m m
1

  ή    
2

12 /m s.

Συνεπώς, μετά την κρούση η σφαίρα Σ1 ακινη-
τοποιείται, ενώ η σφαίρα Σ2 κινείται προς τα 
δεξιά και συγκρούεται με ταχύτητα  22  με την 
ακίνητη σφαίρα Σ3. 
Έστω 2  και 3  οι ταχύτητες των σφαιρών 
Σ2 και Σ3 αμέσως μετά τη μεταξύ τους κρούση. 
Έχουμε: 

  


 
2

2 3

2 3

2

m m

m m
  ή    

2
6 m/s   και

 


 
3

2

2 3

2

2m

m m
  ή    

3
6 m/s.

Συνεπώς, αμέσως μετά την κρούση των σφαι-
ρών Σ2 και Σ3, η Σ2 κινείται προς τα αριστερά 



Κεφάλαιο 1ο: Κρούσεις

29

με ταχύτητα μέτρου 6 m/s και συγκρούεται 
ξανά με την ακίνητη σφαίρα Σ1, ενώ η Σ3 κινεί-
ται προς τα δεξιά με ταχύτητα μέτρου 6 m/s. 
Επειδή οι σφαίρες Σ1 και Σ2 έχουν ίσες μάζες, 
ανταλλάσσουν ταχύτητες, οπότε αμέσως μετά 
τη δεύτερη κρούση τους η σφαίρα Σ2 ακινη-
τοποιείται, ενώ η σφαίρα Σ1 κινείται προς τα 
αριστερά με ταχύτητα μέτρου  

1
6 m s.  

Επομένως, το συνολικό πλήθος των κρού­
σεων μεταξύ των τριών σφαιρών είναι ίσο 
με 3. 

β.	 Έχουμε: 


 
 




2

1

100%

ή  



 


1

2

1

2

100
2 2

2

1 1

2

m

m

%   ή  π = 100%.

γ.	 Έχουμε:    

 
 






1

1

100%

ή  


 




1

2

1

2

100
1 1

2

1 1

2

m

m

%   ή  π′ = 25%.

δ.	 Έχουμε:   

p p p
1 1 1
     

ή    

p m m
1 1 1 1 1
     ή, θεωρώντας θετική τη 

φορά προς τα δεξιά: p m m
1 1 1 1 1
   

ή  Δp1 = –18 kg m/s.

136.	 α.	 Από την ελαστική κρούση των δύο 
σφαιρών έχουμε:

  


 
1

1 2

1 2

m m

m m
1

  ή  υ′1 = + 2 m/s  και  

 


 
2

1

1 2

2m

m m
1

  ή  υ′2 = + 6 m/s.

β.	 Μετά την κρούση, η σφαίρα Σ2 κινείται με 
σταθερή ταχύτητα  2  στο λείο οριζόντιο δά-
πεδο και συγκρούεται με τον τοίχο ελαστικά. 
Συνεπώς, μετά την κρούση με τον τοίχο η τα-
χύτητά της είναι  

 
3 2
   .

H μεταβολή της ορμής της Σ2 εξαιτίας της 
κρούσης με τον τοίχο είναι: 
  

p p p
2 2 2
        ή    

p m m
2 2 3 2 2
    .

ή θεωρώντας θετική τη φορά προς τα δεξιά:
p m

2 2 2
  2    ή  p

2
 12 kg m/s ,

οπότε p2 12 kgm/sΔ .

γ.	 Η σφαίρα Σ1 μετά την κρούση με τη σφαί-
ρα Σ2 συνεχίζει να κινείται προς την ίδια κα-
τεύθυνση (προς τα δεξιά) με σταθερή ταχύτη-
τα  

1
.

Σ
1

Σ
2

d

A

s
1

t
1 

ʹυ
2

ʹυ
1

Σ
2

ʹυ
2

Σ
1

Σ
2

Σ
2

Γ

υ
3

υ
3

ʹυ
1

t
 
=

 
0

Αφού η σφαίρα Σ2 συγκρουστεί ελαστικά με 
τον τοίχο, θα κινηθεί προς τα αριστερά με στα-
θερή ταχύτητα  

 
3 2
    και οι δύο σφαίρες 

θα συγκρουστούν ξανά τη χρονική στιγμή t
1
 

στη θέση Γ, όπως φαίνεται στο παραπάνω σχή-
μα. Το διάστημα που έχει διανύσει η Σ1 από τη 
χρονική στιγμή t = 0  μέχρι τη χρονική στιγμή 
t
1

 είναι s
1
,  ενώ το διάστημα που έχει διανύσει 

η Σ2 στο ίδιο χρονικό διάστημα t t  1
0  

είναι s d s
2 1

2  .
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Ισχύουν:   


2

1

1

2d s

t
  (1)  και   

1

1

1

s

t
  (2).

Με διαίρεση κατά μέλη των σχέσεων (1) και 

(2) έχουμε: 



 


2

1

1

1

2d s

s
  ή  3

2
1

1

 d s

s

ή  s
d

1
2

=   ή  s
1

2= m.

Άρα από τη σχέση (2) προκύπτει t1 = 1 s.

δ.	 Για να συγκρουστούν οι δύο σφαίρες σε 
απόσταση  d m12    d d  από τον τοίχο, 
θα πρέπει η σφαίρα Σ1 αμέσως μετά την κρού-
ση με τη σφαίρα Σ2 να αρχίσει να κινείται προς 
την αντίθετη κατεύθυνση με ταχύτητα  

1
.

Σ
1

Σ
2

d

Α

t
 
=

 
0

t
2 

ʹυ
2

ʹυ
1

Σ
2

ʹυ
2

Σ
1

Σ
2

Σ
2

Δ

ʹυ
3

ʹυ
1

ʹυ
3

dʹ

ʹ ʹ ʹ

ʹ

s
1́

Έστω ότι οι δύο σφαίρες συγκρούονται ξανά 
στη θέση Δ τη χρονική στιγμή t

2
,  όπως φαίνε-

ται στο παραπάνω σχήμα. 
Το διάστημα που έχει διανύσει η σφαίρα Σ1 
από τη χρονική στιγμή t = 0  έως τη χρονική 
στιγμή t

2
 είναι    s d d

1
, ενώ το διάστημα 

που έχει διανύσει η σφαίρα Σ2 είναι    s d d
2

.

Ισχύουν:   


1

1

2

s

t
  ή     


1

2

d d

t
  (3)

  


2

2

2

s

t
  ή     


2

2

d d

t
  (4).

Με διαίρεση κατά μέλη των (3) και (4) έχουμε:



  

 



1

2

d d

d d
  ή  









1

2

1

2
  ή  



 


1

2

1

2

ή  

  
  


  

 

m m

m m

m

m m

1 2

1 2

1

1

1 2

1

2





1

2

ή    


 m m

m

1 2

1
2

1

2
  ή  

��
��
��

m
m
1

2

1
2

.

137.	 α.	 Έχουμε:

  


 
1

1 2

1 2

m m

m m
1

  ή  υ′1 = – 3 m/s  και

 


 
2

1

1 2

2m

m m
1

  ή  υ′2 = + 2 m/s.

β.	 Έχουμε: E K  
2

ή  E m  
1

2
0

2 2

2   ή  Eμετ = 16 J.

γ.	 Έχουμε:   

p p p
1 1 1
     (μετά)

ή  p m m
1 1 1 1
  

1
  ή  �p

1
� �16 kg m/s,

οπότε p1  16 kgm/sΔ .

δ.	 Από την εφαρμογή του θεωρήματος μετα-
βολής της κινητικής ενέργειας για την κίνηση 
του σώματος Σ1 μετά την κρούση από τη θέση 
Α στη θέση Δ, όπου ακινητοποιείται, έχουμε: 

K K W W W    
T w N

1 1 1

ή  0
1

2
0 0

1 1

2

1 1 1
    m m gs 

ή  s
1

1 5= , m.

Γ
Α

Δ w1

T1

N1

w2

T2

N2

s1 s2

υ= 0 υ= 0
ʹυ2

ʹυ1

m1 m2

ΜΕΤΑ
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Από την εφαρμογή του Θεωρήματος Μεταβο-
λής της Κινητικής Ενέργειας για την κίνηση 
του σώματος Σ2 μετά την κρούση από τη θέση 
Α στη θέση Γ, όπου ακινητοποιείται, έχουμε:

K K W W W    
T w N

2 2 2

ή  0
1

2
0 0

2 2

2

2 2 2
    m m gs 

ή  s
2

0 5= , m.

Η απόσταση μεταξύ των σωμάτων, όταν ακι-
νητοποιηθούν, είναι: d s s 

1 2
  ή  d = 2 m.

138.	 α.	 Η αλγεβρική τιμή της ταχύτητας 1  

είναι:   


 
11

1 2

1 2

m m

m m
1

  (1).

Επειδή η ταχύτητα  1  είναι αντίρροπη της τα-
χύτητας υ

1
,  ισχύει      

1
9

1
/m s .

Με αντικατάσταση των τιμών στη σχέση (1) 

προκύπτει: m
m
1

2

1
4

== .

β.	 Έχουμε:  


 
2

1

1 2

1

2m

m m

ή   


 
2

2

1

1

2

1
m

m

  ή    
2

6 m s/ .

Συνεπώς, είναι 2 6 m/s.υ

γ.	 Έχουμε:  



  

 




2

1

100%
΄

ή  



 


1

2

1

2

100
2 2

2

1 1

2

m

m

%   ή  π = 64%.

δ.	 Για να υπολογίσουμε το συνολικό διάστη-
μα s

1
 που διανύει το σώμα μάζας m

1
 μετά την 

κρούση, εφαρμόζουμε το Θ.Μ.Κ.Ε. για τις θέ-
σεις Α και Δ της κίνησής του (βλέπε το παρα-
κάτω σχήμα).

K K W W W
1 1 1 1 1       

T w N

ή  0
1

2
0 0

1 1

2

1 1
    m m gs   

ή  s
1

40 5= , m.

Για να υπολογίσουμε το συνολικό διάστημα 
s

2
 που διανύει το σώμα Σ2 μετά την κρούση, 

εφαρμόζουμε το Θ.Μ.Κ.Ε. για τις θέσεις Α και 
Γ της κίνησής του.
K K W W W

2 2 2 2 2       
T w N

ή  0
1

2
0 0

2 2

2

2 2
    m m gs 

ή  s
2

18= m.

w1

T1
N1

w2

T2
N2

s1 s2

ʹυ2ʹυ1

m1 m2

ΜΕΤΑ

ΓΔ
Α

υ= 0 υ= 0

Η απόσταση μεταξύ των σωμάτων, όταν ακι-
νητοποιηθούν, προκύπτει: d s s 

1 2

ή  d = 58,5 m.

139.	 α.	 Έστω  1  και  2  οι ταχύτητες των 
σωμάτων Σ1 και Σ2 αντίστοιχα αμέσως μετά 
την κρούση. Έχουμε:

  


 
1

1 2

1 2

m m

m m
1

  ή  υ′1 = + 2 m/s  και

 


 
2

1

1 2

2m

m m
1

  ή  υ′2 = + 6 m/s.

Παρατηρούμε ότι τα δύο σώματα μετά την 
κρούση κινούνται προς την ίδια κατεύθυνση.

΄
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β.	 Για να υπολογίσουμε τον συντελεστή 
τριβής ολίσθησης μ2 μεταξύ του σώματος Σ2 
και του οριζόντιου δαπέδου, εφαρμόζουμε το 
Θ.Μ.Κ.Ε. για την κίνηση του Σ2 από τη χρο-
νική στιγμή αμέσως μετά την κρούση μέχρι τη 
χρονική στιγμή στην οποία ακινητοποιείται. 

K K W W W
2 2 2 2 2       

T w N

ή  0
1

2
0 0

2 2

2

2 2 2
    m m gs 

ή  μ2 = 0,1.

γ.	 Για να υπολογίσουμε το διάστημα s1 που 
διανύει το σώμα Σ1 μετά την κρούση, εφαρ-
μόζουμε το Θ.Μ.Κ.Ε. για την κίνησή του από 
τη χρονική στιγμή αμέσως μετά την κρούση 
μέχρι τη χρονική στιγμή στην οποία ακινητο-
ποιείται.
K K W W W

T w N1 1 1 1 1       

ή 0
1

2
0 0

1 1

2

1 1 1
    m m gs    ή  s1 = 2 m.

δ.	 Έχουμε: 
Q Q Q  

T T
1 2

  ή  Q W W  
T T

1 2

ή  Q m gs m gs   
1 1 1 2 2 2

  ή  Qολ = 24 J.

140.	 α.	 Έστω υ2  η ταχύτητα του σώματος 
Σ2 ακριβώς πριν από την κρούση. Από την 
εφαρμογή του Θ.Μ.Κ.Ε. για την κίνηση του 
σώματος Σ2 από τη θέση Δ στη θέση Α πριν 
από την κρούση έχουμε: 

K K W W W
2 2 2 2 2       

T w N

 ή  1

2

1

2
0 0

2 2

2

2 02

2

2 2
m m m gd      

ή  2 6 m s/ .υ

Α

υ= 0
ʹυ2

ʹυ1

Σ2Σ1 Σ2

ΑΓ w2

T2

N2

d1 d2

υ2 υ02υ1υ01

Σ2Σ1 Σ1 Σ2

Δ

ΠΡΙΝ

ΜΕΤΑ

β.	 Έστω  2  η ταχύτητα του σώματος Σ2 αμέ-
σως μετά την κρούση. Από την εφαρμογή του 
Θ.Μ.Κ.Ε. για την κίνηση του σώματος Σ2 από 
τη θέση Α στη θέση Δ μετά την κρούση έχου-
με:   2 2 2 2 2      W W W

T w N

ή  0
1

2
0 0

2 2

2

2 2
    m m gd   

ή  2 8 m s/ .υ

γ.	 Έστω υ1  και  1  οι ταχύτητες του σώματος 
Σ1 ακριβώς πριν και αμέσως μετά την κρούση 
αντίστοιχα. 
Επειδή το σώμα Σ1 κινείται πριν από την κρού-
ση στην περιοχή όπου το δάπεδο είναι λείο, 
η κίνησή του είναι ευθύγραμμη ομαλή. Συνε-
πώς, ισχύει:  

1 01
 .  

Τα σώματα Σ1 και Σ2 έχουν ίσες μάζες, οπό-
τε κατά την (κεντρική και ελαστική) κρούση 
ανταλλάσσουν ταχύτητες: 

 
1 2
    ή   

1 2
    ή  

1
8 m s/ .

Άρα: 01 8 m s/υ .

δ.	 Έστω α2  το μέτρο της επιβράδυνσης του 
Σ2 πριν από την κρούση. Έχουμε:

F m
x


2 2
   ή  T m

2 2 2
   

ή   m g m
2 2 2

   ή   
2
 g   ή  �

2
4� m/s

2
.

Η χρονική στιγμή t
1

 στην οποία το σώμα Σ2 
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συγκρούεται με το Σ1 υπολογίζεται από τη 

σχέση:    
2 02 2 1
  t   ή t

1

02 2

2


 


ή  t s

1
1= .

Επειδή το Σ1 εκτελεί ευθύγραμμη ομαλή κίνη-
ση πριν από την κρούση, έχουμε:


01

1

1

 d

t
  ή  d t

1 01 1
    ή  d1 = 8 m.

ε.	 Έχουμε: t t
d

2 1

1

1

 


  ή  t t
d

2 1

1

2

 


ή  t t
2 1

4

3
� � s.

Ο ρυθμός μεταβολής της κινητικής ενέργειας 
του σώματος Σ2 τη χρονική στιγμή t

2
 υπολο-

γίζεται από τη σχέση: dK

dt
F   .

Έχουμε: dK

dt
T

t
2

2
  

ή  dK

dt
m g t t

t
2

2 2 2 2 1
       

ή  dK
dt

J s
t2

�� ��32 / .

141.	 α.	 Έχουμε:   


 
1

1 2

1 2

m m

m m
1

ή  υ′1 = – 4 m/s και

 


 
2

1

1 2

2m

m m
1

  ή  υ′2 = + 4 m/s.

β.	 Αμέσως μετά την κρούση η σφαίρα Σ2 αρ-
χίζει να κινείται κυκλικά. 

Σ
2

Ο

T
2

w
2

Α

ʹυ
2

Στη θέση Α του προηγούμενου σχήματος ισχύ-

ει: F F    ή  T w
m

2 2

2 2

2

  


ή  T m g
m

2 2

2 2

2

  


  ή  Τ2 = 90 Ν.

γ.	 Εφαρμόζουμε την Α.Δ.Μ.Ε. για τις θέσεις 
Α και Γ της κυκλικής τροχιάς που διαγράφει η 
σφαίρα Σ2 μετά την κρούση: 

E E        ή  K U K U        ή

1

2
0 0

2 2

2

2
m m gh      ή  h = 0 8, m.

φ

Α

�

Γ h

x

�

βαρU 0 ʹυ2Σ2

υ= 0

βαρU 0

Ο

Επομένως, είναι:   x


  ή    


h

ή    0   ή  φ = 90°.

142.	 α.	 Έστω υ το μέτρο της ταχύτητας του 
σώματος Σ2 στο ανώτερο σημείο Γ της κυκλι-
κής τροχιάς που διαγράφει μετά την κρούση.
Οι δυνάμεις που ασκούνται στο σώμα Σ2 στο 
σημείο Γ είναι: το βάρος του  

w m g
2 2
=  και η 

τάση του νήματος 


T.  
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Ο

Α

Γ

�

υ

T

Σ2

ʹυ2

w2

Σ2
βαρU 0

ΜΕΤΑ

Η συνισταμένη των δυνάμεων που ασκούνται 
στο σώμα Σ2 στη θέση Γ δρα ως κεντρομόλος 

δύναμη. Επομένως:  F F 

ή  T m g
m 

2

2

2


  ή T
m

m g 2

2

2




  (1).

Για να εκτελέσει το σώμα Σ2 ανακύκλωση, 
πρέπει να φτάσει στη θέση Γ με το νήμα τε-
ντωμένο. Συνεπώς, πρέπει να ισχύει: T ≥ 0

ή, λόγω της (1): m
m g

2

2

2
0




 

ή  m
m g

2

2

2




   ή   g   (2).

Από τη σχέση (2) προκύπτει ότι το μέτρο της 
ταχύτητας του σώματος Σ2 στη θέση Γ, ώστε 
αυτό μόλις να εκτελεί ανακύκλωση είναι:

  g (3)  ή    5 m s/ .

Για να υπολογίσουμε το μέτρο 2  της ταχύ-
τητας του σώματος Σ2 αμέσως μετά την κρού-
ση, εφαρμόζουμε την Α.Δ.Μ.Ε. για τις θέσεις 
Α και Γ της κυκλικής τροχιάς που διαγράφει 
το σώμα Σ2 μετά την κρούση, θεωρώντας ως 
επίπεδο μηδενικής βαρυτικής δυναμικής ενέρ-
γειας το οριζόντιο επίπεδο που διέρχεται από 
τη θέση Α. 

      

ή  K U K U
A A2 2 2 2          

ή  1

2
0

1

2
2

2 2

2

2

2

2
m m m g     

ή, λόγω της (3):

1

2

1

2
2

2

2   g g 

ή   
2

5g   ή  υ′2 = 5 m/s.

β.	 Από τη σχέση που δίνει την αλγεβρική 
τιμή της ταχύτητας του σώματος Σ2 αμέσως 
μετά την κρούση έχουμε:

 


 
2

1

1 2

2m

m m
1

  ή  m2 = 5 kg.

γ.	 Θα υπολογίσουμε το μέτρο 2  της ταχύ-
τητας του σώματος Σ2 τη χρονική στιγμή στην 
οποία το νήμα γίνεται οριζόντιο για πρώτη 
φορά μετά την κρούση. 
Εφαρμόζουμε την Α.Δ.Μ.Ε. για τις θέσεις Α 
και Δ της κυκλικής τροχιάς που διαγράφει το 
σώμα Σ2 μετά τη κρούση, όπως φαίνεται στο 
παρακάτω σχήμα. 

Ο

Α ʹυ2

Δ

ʹʹυ2

T

Σ2

w2

βαρU 0=

E E        ή  K U K U     

ή  1

2
0

1

2
2 2

2

2 2

2

2
m m m g     

ή   
2

15 m s/ .



Κεφάλαιο 1ο: Κρούσεις

35

Στη θέση Δ του σώματος Σ2 ισχύει: 

T F    ή  T
m


2 2

2


  ή  Τ = 150 Ν.

δ.	 Έχουμε: dp

dt
F





    ή  dp

dt
T m g



 2

2

2 2

ή  dp
dt



== 50 10 kgm/s2.

143.	 α.	 Για να υπολογίσουμε το μέτρο υ1 της 
ταχύτητας της σφαίρας Σ1 ακριβώς πριν από 
την κρούση, επιλέγουμε ως επίπεδο μηδενικής 
βαρυτικής δυναμικής ενέργειας το οριζόντιο 
επίπεδο στο οποίο βρίσκεται το σώμα Σ2 και 
εφαρμόζουμε την Α.Δ.Μ.Ε. για την κίνηση της 
σφαίρας Σ1 από τη θέση Α στη θέση Γ, όπως 
φαίνεται στο ακόλουθο σχήμα.

Α

υ1

Ο

υ2 = 0
Σ2

Σ1

υ0

Γ
ΠΡΙΝ

βαρU 0

�

�

      

ή  K U K U
A A1 1 1 1          

ή  1

2

1

2
0

1 0

2

1 1 1

2
m m g m      ή  υ1 = 5 m/s.

β.	 Η αλγεβρική τιμή της ταχύτητας 2  του 
σώματος Σ2 αμέσως μετά την κρούση είναι: 

 


 
2

1

1 2

2m

m m
1

  ή    
2

2 m/s.

Για να υπολογίσουμε το διάστημα s που διανύ-
ει το σώμα Σ2 μετά την κρούση, εφαρμόζουμε 
το Θ.Μ.Κ.Ε. για την κίνηση του Σ2 μεταξύ των 
θέσεων Γ και Δ, όπως φαίνεται στο παρακάτω 
σχήμα.

Σ
1

Ο

Σ
2

h

s

w
2

T
2

N
2 υ= 0

Γ Δ

ʹυ
1

ʹυ
2Ζ

ΜΕΤΑ

υ= 0

K K W W W
T w N2 2 2 2 2       

ή  0
1

2
0 0

2 2

2

2
    m m gs    ή  s

g




2

2

2

ή  s = 1 m.

γ.	 Η αλγεβρική τιμή της ταχύτητας 1  της 
σφαίρας Σ1 αμέσως μετά την κρούση είναι: 

  


 
1

1 2

1 2

1

m m

m m
  ή    

1
3 m s/ .

Για να υπολογίσουμε το μέγιστο ύψος h που 
φτάνει η σφαίρα Σ1 πάνω από το οριζόντιο 
δάπεδο μετά την κρούση, εφαρμόζουμε την 
Α.Δ.Μ.Ε. για την κίνηση της Σ1 μεταξύ των 
θέσεων Γ και Ζ.
         ή  K U K U

1 1 1 1              

ή  1

2
0 0

1 1

2

1
m m gh      ή  h

g



1

2

2

ή  h = 0,45 m.

δ.	 Έχουμε:  


 
 




2

1

100%   

ή  



 


1

2

1

2

100
2 2

2

1 0

2

m

m

%   ή  π = 100%.
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144.	α.	 Για να πραγματοποιηθεί και δεύτε-
ρη κρούση μεταξύ των δύο σωμάτων Σ1 και 
Σ2, θα πρέπει αμέσως μετά την πρώτη μεταξύ 
τους κρούση το σώμα Σ1 να ακινητοποιηθεί. 

Επομένως,έχουμε:   


 
1

1 2

1 2

m m

m m
1

 από όπου 

προκύπτει: m m
2 1
=   ή  m2 = 1 kg.

β.	 π = 100 %.

γ.	 Ισχύει:   
2 1

  ή   
2

3 m s/ .

φ

Ο

Α

�

Γ
h

x

�

βαρU 0 Σ2

υ= 0

ʹυ2
βαρU 0

Από την Α.Δ.Μ.Ε. μεταξύ των θέσεων Α και Γ 
της κίνησης του σώματος Σ2 μετά την κρούση 

έχουμε:       

ή  1

2
2 2

2

2
m m gh    ή  h = 0 45, m.

Επομένως:   x


  ή    


h

ή    1

2
  ή  φ = 60°.

δ.	 Το σώμα Σ2, αφού ακινητοποιηθεί στιγμι-
αία στη θέση Γ, θα επιστρέψει στη θέση Α με 
ταχύτητα μέτρου 2  και θα ξανασυγκρου-
στεί με το σώμα Σ. 
Επειδή m m

1 2
=  και οι κρούσεις μεταξύ των 

δύο σωμάτων είναι κεντρικές και ελαστικές, 
το μέτρο 1  της ταχύτητας του σώματος Σ1 
αμέσως μετά τη δεύτερη κρούση του με τo Σ2 

θα είναι:   
1 2

  ή   
1

3 m s/ .

ΑΔ w
1

T
1

N
1

s

υ= 0
ʹʹυ
1

Εφαρμόζοντας το Θ.Μ.Κ.Ε. για την κίνηση 
του σώματος Σ1 μεταξύ των θέσεων Α και Δ 
έχουμε: K K W W W

T w N1 1 1 1 1       

ή  0
1

2
0 0

1 1

2

1
    m m gs    ή  s = 1,5 m.

145.	 α.	 Από την Α.Δ.Μ.Ε. για την κίνηση 
του σώματος Σ1 μεταξύ των θέσεων Α και Γ 
πριν από την κρούση έχουμε:

         ή  m gR m
1 1

21

2
 

ή    2gR   ή  υΓ = 10 m/s.

β.	 Από την εφαρμογή του Θ.Μ.Κ.Ε. για την 
κίνηση του σώματος Σ1 πριν από την κρούση 
από τη θέση Γ στη θέση Δ έχουμε: 

K K W W W
T w N1 1 1 1 1       

ή  1

2

1

2
0 0

1 1

2

1

2

1 1
m m m gs      

ή    
1

2 
2

1
gs   ή  

1
8 m s/ .

Για την ελαστική κρούση των σωμάτων Σ1 και 
Σ2 ισχύει: 

 


 


  
1

2

1 2

1 2

1 2

2m

m m

m m

m m
2 1

  και

 


 


  
2

1

1 2

2 1

1 2

2m

m m

m m

m m
1 2

.

προκύπτουν:   
1

10 m/s   και    
2

2 m/s.

Άρα: 1 10 m/sυ   και  2 2 m/sυ .

γ.	 Έχουμε:   

p p p
2 2 2
     

ή  p m m
2 2 22 2 2
     ή  p m

2 2 2 2
      
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ή  p
2

3 2 4      kg m/s

ή  �p
2

18� � kg m/s.

Δηλαδή η μεταβολή της ορμής του σώματος 
Σ2 έχει μέτρο 18 kg m/s και φορά προς τα 
δεξιά.

δ.	 Το ζητούμενο ποσοστό είναι:

 


 
 




1

1

100%

ή    






   

 

 


1 1

1

100%
΄

ή  
 








1

2

1

2

1

2

100
1 1

2

1 1

2

1 1

2

m m

m

%

ή  π = 56,25%.

146.	 α.	 Από την Α.Δ.Μ.Ε. για την κυκλική 
κίνηση της σφαίρας Σ1 μεταξύ των θέσεων Α 
και Γ πριν από την κρούση έχουμε:
      

ή  1

2

1

2
0

1 0

2

1 1 1

2
m m gR m   

ή   
1 0

2
2  gR   ή  1 12 m s/ .υ

β.	 Έστω 1  η ταχύτητα της σφαίρας Σ1 αμέ-
σως μετά την κρούση. 
Από την Α.Δ.Μ.Ε. για την κίνηση της σφαίρας 
Σ1 μετά την κρούση από τη θέση Γ στη θέση Δ 
έχουμε:       

ή  1

2
0 0

1 1

2

1
m m gh      ή   

1
2gh

ή   
1

4 m s/ .

Επομένως:    


 
1

1 2

1 2

m m

m m
1

ή    


4 12
1 2

1 2

m m

m m
  ή  m

m
1

2

1
2

== .

γ.	 Έχουμε:  


 
2

1

1 2

2m

m m
1

  ή   
2

8 m s/ .

Από το Θ.Μ.Κ.Ε. για την κίνηση της σφαίρας 
Σ2 από τη χρονική στιγμή αμέσως μετά την 
κρούση μέχρι τη χρονική στιγμή στην οποία 
ακινητοποιείται έχουμε: 
K K W W W

T w N    
2 2 2

ή  0
1

2
0 0

2 2

2

2 2 2
    m m gs 

ή  s2 = 6,4 m.

δ.	 Επειδή κατά την κίνηση της σφαίρας Σ1 
στο λείο τεταρτοκύκλιο η μηχανική της ενέρ-
γεια διατηρείται σταθερή, η σφαίρα Σ1, αφού 
ακινητοποιηθεί στιγμιαία μετά την κρούση 
στο σημείο Δ, θα επιστρέψει στο σημείο Γ με 
ταχύτητα μέτρου 

1
.  

Για να εξετάσουμε αν η Σ1 συγκρουστεί για 
δεύτερη φορά με τη Σ2, θα πρέπει να υπολο-
γίσουμε το διάστημα s

1
 που διανύει η Σ1 στο 

οριζόντιο δάπεδο από τη χρονική στιγμή στην 
οποία επιστρέφει στο σημείο Γ μέχρι τη χρονι-
κή στιγμή στην οποία ακινητοποιείται. 
Από το Θ.Μ.Κ.Ε. για την κίνηση της σφαίρας 
Σ1 στο οριζόντιο δάπεδο έχουμε:

K K W W W
T w N    

1 1 1

ή  0
1

2
0 0

1 1

2

1 1 1
    m m gs    ή  s

1
8= m.

Επειδή s s
1 2
> ,  οι δύο σφαίρες θα συγκρου-

στούν για 2η φορά.

147.	 α.	 Για να υπολογίσουμε το μέτρο της 
ταχύτητας 



υ1  του σώματος Σ1 ακριβώς πριν 
από την κρούση, εφαρμόζουμε το Θ.Μ.Κ.Ε. 
για την κίνησή του από τη θέση Α στη θέση Γ. 
Είναι: K K W W W

w T N   
1 1 1
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ή  1

2
0 0

1 1

2

1 1 1 1 1
m m g s m g s      

ή  υ1 = 4 m/s.

β.	 Για την ελαστική κρούση των σωμάτων Σ1 
και Σ2 ισχύει:

  


 
1

1 2

1 2

m m

m m
1

  ή  υ′1 = – 2 m/s  και

 


 
2

1

1 2

2m

m m
1

  ή  υ′2 = + 2 m/s.

γ.	 Το σώμα Σ1 αμέσως μετά την κρούση κι-
νείται προς την κορυφή του κεκλιμένου επιπέ-
δου. Έστω s το διάστημα που διανύει το σώμα 
Σ1 στο κεκλιμένο επίπεδο μετά την κρούση 
μέχρι να ακινητοποιηθεί στιγμιαία. 
Εφαρμόζουμε το Θ.Μ.Κ.Ε. για την κίνηση του 
σώματος Σ1 μετά την κρούση από τη θέση Γ 
μέχρι τη θέση Δ, όπου ακινητοποιείται στιγμι-

αία:  K K W W W
w N��� ���� � � ��

1 1 1

ή  0
1

2
1 1

2

1 1 1
   m m g s m g s   

ή  s = 0 m.,25

Η απόσταση του σημείου Α από το σημείο Δ 
είναι: d s s 

1
  ή  d = 3,75 m.

δ.	 Για την κίνηση του σώματος Σ2 από τη χρο-
νική στιγμή αμέσως μετά την κρούση μέχρι τη 
χρονική στιγμή που φτάνει στη βάση του κε-
κλιμένου επιπέδου έχουμε:    

2
t

 ή  2 2m/s m/s  t   ή  � � 0.

Συνεπώς, το σώμα εκτελεί ευθύγραμμη ομαλή 
κίνηση. Άρα: F

x
 0   ή  w T

x2 2
=

ή  m g m g
2 2 2
     ή  2

3
3

μ .

148.	 α.	 Εφαρμόζουμε το Θ.Μ.Κ.Ε. για την 
κίνηση του σώματος Σ1 από τη χρονική στιγμή 
στην οποία το εκτοξεύσαμε από τη βάση του 
κεκλιμένου επιπέδου μέχρι τη χρονική στιγμή 
ακριβώς πριν από την κρούση με το σώμα Σ2.
K K W W W

w T N    
1 1 1

ή  1
2

1

2
1 1

2

1 0

2

1 1
m m m g s    

                                    
1 1 1

0m g s

ή      
1 0

2

1 1
2   gs

ή  1 8 m s/ .υ

β.	 Εφαρμόζουμε το Θ.Μ.Κ.Ε. για την κίνηση 
του σώματος Σ1 από τη χρονική στιγμή αμέ-
σως μετά την κρούση μέχρι τη χρονική στιγμή 
στην οποία φτάνει με μηδενική ταχύτητα στη 
βάση του κεκλιμένου επιπέδου. 

K K W W W
w T N    

1 1 1

ή  0
1

2
1 1

2

1 1 1 1 1
  m m g s m g s   

ή        
1 1 1

2gs

ή  1 4 m s/ .υ

γ.	 Έχουμε:   


 
1

1 2

1 2

1

m m

m m

ή    


4 8
1 2

1 2

m m

m m
  ή  m

m
1

2

1
3

== .

δ.	 Έχουμε:  


 
2

1

1 2

1

2m

m m
  ή    

2
4 m s/ .

Επομένως: 


 
 




2

1

100%

ή  



 


1

2

1

2

100
2 2

2

1 1

2

m

m

%   ή  π = 75%.
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ε.	 Έστω s
2

 το διάστημα που διανύει το σώμα 
Σ2 στο κεκλιμένο επίπεδο από τη χρονική στιγ-
μή αμέσως μετά την κρούση μέχρι τη χρονική 
στιγμή στην οποία ακινητοποιείται στιγμιαία. 
Από το Θ.Μ.Κ.Ε. για την κίνηση αυτήν έχου-
με: K K W W W

w N    
2 2 2

   ή

0
1

2
0

2 2

2

2 2 2 2 2
    m m g s m g s   

ή  s
g

2

2

2

2
2


 


  
  ή  s

2
0 8= , m.

Η απόσταση του σημείου Δ, στο οποίο ακι-
νητοποιείται στιγμιαία το σώμα Σ2 μετά την 
κρούση, από τη βάση του κεκλιμένου επιπέ-
δου είναι: d s s 

1 2
  ή  d = 4 m.

Άρα το μέγιστο ύψος h
max

 πάνω από τη βάση 
του κεκλιμένου επιπέδου στο οποίο φτάνει το 
σώμα Σ2 μετά την κρούση προκύπτει: 

  h

d

max   ή  hmax = 2 m.

149.	 α.	 Έχουμε:   


 
1

1 2

1 2

1

m m

m m

ή  υ′1 = 0  και   


 
2

1

1 2

1

2m

m m

ή  υ′2 = +2 m/s.

β.	 Έστω ∆
max

 η μέγιστη συσπείρωση του 
ελατηρίου.
Εφαρμόζουμε το Θ.Μ.Κ.Ε. για την κίνηση 
του σώματος Σ2 μετά την κρούση μεταξύ των 
θέσεων Α και Γ, όπως φαίνεται στο ακόλουθο 
σχήμα: 

Σ
1

Σ
2

A

Σ
1

Σ
2

υ
1

ʹυ
1 = 0

Δ�
max

w
2

T
2

N
2

Γ

ʹυ
2

ΠΡΙΝ

ΜΕΤΑ

k

Θ.Φ.Μ.

υ= 0

K K W W W W
F w N2 2 2 2 2         


ή  0
1

2
2 2

2

2 2
  m m g

max
         

                           � � � �� � � �U U
A�� �� � 0 0   

ή    
1

2
2 2 22

2
m m g

max
  

                       � � � �0
1

2

2

k �
max

ή  1

2

2

2 2
k m g

max max
       

1

2
0

2 2

2
m    

ή  25 5 2 0
2  

max max       (S.I.)  (1).

Οι λύσεις της εξίσωσης (1) είναι:

��max 0 2, m,Δ  
max

 0 4, m

Δεκτή λύση είναι η ��max 0 2, m.Δ

γ.	 Έχουμε: Q W m g
T T max
  

2 2


ή  QT = 2 J.

δ.	 Τη χρονική στιγμή στην οποία το σώμα Σ2 
ακινητοποιείται στιγμιαία για πρώτη φορά μετά 
την κρούση είναι: Fελ = k∆

max
  ή  Fελ = 20 Ν.
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Η οριακή στατική τριβή που ασκείται στο 
σώμα Σ2 είναι: Τορ = μsN2  ή  Τορ = μsm2g

ή  Τορ = 10 Ν.

Επειδή είναι Fελ > Τορ, το σώμα Σ2 θα αρχίσει 
να κινείται ξανά προς τα αριστερά.
Έστω υ′ το μέτρο της ταχύτητας με την οποία 
επιστρέφει το σώμα Σ2 στο σημείο Α όπου 
πραγματοποιήθηκε η κρούση. Από την εφαρμο-
γή του Θ.Μ.Κ.Ε. για την κίνηση του σώματος 
Σ2 μεταξύ των θέσεων Γ και Α έχουμε:

K K W W W W
T F w N2 2 2 2 2        



ή  1

2

1

2
2

2

2 2

2

m m g k
max max

         

ή       
k

m
g

max max

2

2

2
2     ή  υ′ = 0.

Άρα οριακά δεν θα συμβεί δεύτερη κρούση 
μεταξύ των δύο σωμάτων. 

150.	 α.	 Οι αλγεβρικές τιμές των ταχυτή-
των 1  και 2  που έχουν τα σώματα Σ1 και 
Σ2 αντίστοιχα αμέσως μετά την κρούση δίνο-

νται από τις σχέσεις:   


 
1

1 2

1 2

1

m m

m m
 (1)  και  

 


 
2

1

1 2

1

2m

m m
 (2).

Από τη σχέση (1) έχουμε: 

  


10
2

2

1 1

1 1

1

m m

m m
   ή  

1
3 10  m s/ .

Από το Θ.Μ.Κ.Ε. για την κίνηση του σώματος 
Σ1 από τη χρονική στιγμή t

0
0=  έως τη χρο-

νική στιγμή t
1

 ακριβώς πριν από την κρούση 
έχουμε: K K W W W

T w N    
1 1 1

ή  1

2

1

2
0 0

1 1

2

1 0

2

1
m m gdm      

ή  υ0 = 10 m/s.

β.	 Από τη σχέση (2) προκύπτει: 

 


2

1
2

3
  ή   

2
2 10 m s/ .

Το ζητούμενο ποσοστό είναι:






  



2

1

2 2

2

1 1

2

1

2

1

2

100

( )

%

m

m

ή  
800
9

%.π

γ.	 Έστω α1  το μέτρο της επιβράδυνσης του 
σώματος Σ1 κατά τη διάρκεια της κίνησής του 
στο οριζόντιο δάπεδο. Έχουμε: F m

x


1 1


ή  T m
1 1 1
    ή   m g m

1 1 1
   ή   

1
 g

ή  �
1

2
5� m s/ .

Για την κίνηση του Σ1 από τη χρονική στιγμή 
t

0
0=  έως τη χρονική στιγμή t1 ακριβώς πριν 

από την κρούση έχουμε:

  
1 0 1 1
  t   ή  t

1

0 1

1

  


  ή  t
1

0 08= , s.

Για την κίνηση του σώματος Σ1 από τη χρονική 
στιγμή t

1
 αμέσως μετά την κρούση μέχρι τη 

χρονική στιγμή t
2

 στην οποία ακινητοποιείται 

έχουμε: 0
1 1 2 1

     t t   ή  t t
2 1

1

1

 



  

ή  t t
2 1

1

1

 



  ή  t2 = 0,72 s.

δ.	 Από το Θ.Μ.Κ.Ε. για την κίνηση του σώ-
ματος Σ2 από τη χρονική στιγμή t1 αμέσως 
μετά την κρούση μέχρι τη χρονική στιγμή 
στην οποία το ελατήριο αποκτά τη μέγιστη 
συσπείρωσή του, όταν το σώμα Σ2 ακινητο-
ποιείται στιγμιαία για πρώτη φορά μετά την 
κρούση, έχουμε:

K K W W W W
F w N  

    
2 2 2
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ή  0
1

2
2 2

2

2
  m T

max
               

                          � � �� � � �U U�� ��� �� ��� 0  

ή       
1

2

1

2
0

2 2

2

2

2

m m g k    

max max
 

ή  52 5 5 20 0
2

,   

max max       (S.I.)

από την οποία προκύπτει: 12
21

m.��maxΔ

151.	 α.	 Οι αλγεβρικές τιμές των ταχυτή-
των 1  και 2  που έχουν τα σώματα Σ1 και 
Σ2 αντίστοιχα αμέσως μετά την ελαστική τους 
κρούση είναι:

  


 
1

1 2

1 2

1

m m

m m
  ή  υ′1 = 0  και

 


 
2

1

1 2

1

2m

m m
  ή  υ′2 = +10 m/s.

β.	 Η μέγιστη συσπείρωση του ελατηρίου 
∆

max
 επιτυγχάνεται, όταν τα σώματα Σ2 και 

Σ3 αποκτήσουν κοινή ταχύτητα υ.  
Από την Α.Δ.Ο. για το σύστημα των σωμάτων 
Σ2 και Σ3 έχουμε:  p p   

ή  m m m
2 2 2 3
       ή  υ = 2 m/s.

γ.	 Για να υπολογίσουμε τη μέγιστη συσπεί-
ρωση ∆

max
 του ελατηρίου, εφαρμόζουμε 

την Α.Δ.Μ.Ε. για το σύστημα των σωμάτων 
Σ2 και Σ3 από τη χρονική στιγμή αμέσως μετά 
την κρούση του Σ1 με το Σ2 μέχρι τη χρονική 
στιγμή στην οποία τα Σ2 και Σ3 αποκτούν κοι-
νή ταχύτητα υ.
       

ή  K U K U��� �� ��� ��� �� ���� � �� � � �

ή  1

2

1

2

1

2
0

2 2

2

3

2

2

2
m m m     

                             1

2

2

k
max



ή  Δ��max m0 5, .

δ.	 Το σύστημα των σωμάτων Σ2 και Σ3 είναι 
μονωμένο. Έστω 



υ2  και 


υ3  οι ταχύτητες των 
σωμάτων Σ2 και Σ3 αντίστοιχα τη χρονική στιγ-
μή στην οποία το ελατήριο επανέρχεται στο 
φυσικό του μήκος.
Από την Α.Δ.Ο. για το σύστημα των σωμάτων 
Σ2 και Σ3 από τη χρονική στιγμή αμέσως μετά 
την κρούση του σώματος Σ1 με το σώμα Σ2 μέ-
χρι τη χρονική στιγμή στην οποία το ελατήριο 
αποκτά ξανά το φυσικό του μήκος, θεωρώντας 
θετική τη φορά της ταχύτητας 

2
,  έχουμε:

 

p p�� ��� �� ���( ) ( )
�   ή  m m m

2 2 2 2 3 3
    

ή  m m
2 2 2 3 3

       (1).

Από την Α.Δ.Μ.Ε. για το σύστημα των δύο 
σωμάτων έχουμε:        

ή  1

2

1

2

1

2
2 2 2

2

3 3

2

2

2
m m m    

ή  m m
2 2

2

3 3

2

2

2     

ή  m m
2 2 2 3 3

2

2 2
           (2).

Με διαίρεση κατά μέλη των (2) και (1) προκύ-
πτει:     

2 2 3
  (3).

Από τις (1) και (3) προκύπτουν:

 
2

2 3

2 3

2
 




m m

m m
  ή  υ2 = – 6 m/s,

οπότε: 
2

6 m s/  και

 
3

2

2 3

2

2



m

m m
  ή  υ3 = + 4 m/s.

Επομένως, τη χρονική στιγμή στην οποία το 
ελατήριο επανέρχεται στο φυσικό του μήκος 
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οι αλγεβρικές τιμές των ταχυτήτων των σωμά-
των που είναι στερεωμένα στα άκρα του ταυτί-
ζονται με τις αλγεβρικές τιμές των ταχυτήτων 
που προκύπτουν από τους τύπους της ελαστι-
κής κρούσης.

152.	 α.	 Από την Α.Δ.Ο. για το σύστημα των 
δύο σωμάτων κατά την κρούση έχουμε: 
 

p p�� ��� �� ���( ) ( )
�

ή  m m 
0
     ή  υ = 4 m/s.

β.	 Έχουμε:   p p p      ή

p m m   
0
  ή  �p m s�� � �19 6, ,kg /

οπότε: p m s19 6, .kg /Δ
βλ

γ.	 Από το Θ.Μ.Κ.Ε. για την κίνηση του συσ-
σωματώματος από τη χρονική στιγμή αμέσως 
μετά την κρούση μέχρι τη χρονική στιγμή 
στην οποία ακινητοποιείται έχουμε: 

K K W W W
w N T    

ή 0
1

2
0 0

2       M m m gs  

ή  s = 2 m.

δ.	 Έχουμε:    

 




   

 

K K

K
100%

΄

ή  
 




  


1

2

1

2

1

2

100
0

2 2

0

2

m M m

m

%

ή  π = 98%.

ε.	 Έχουμε: Q Q Q   

ή  Qολ = Κολ(πριν) – Κολ(μετά) + W
T

ή  Q m M m     1

2

1

2
0

2 2    M m gs  

ή  Qολ = 2.000 J.

153.	 α.	 Εφαρμόζουμε την Α.Δ.Ο. για το σύ-
στημα των δύο σωμάτων κατά την κρούση:
 

p p�� ���� �� ����( ) ( )
� ΄

ή  m m m m
1 1 2 2 1 2
        ή  υ = 2 m/s. 

υ1 υ2

ΠΡΙΝ

υ

m2+m1

m1 m2

ΜΕΤΑ

(+)

ΠΡΙΝ

ΜΕΤΑ

β.	 Έχουμε: Εαπ = Κολ(πριν) – Κολ(μετά) 

ή     1

2

1

2
1 1

2

2 2

2
m m   1

2
1 2

2
m m 

ή  Εαπ = 12 J.

γ.	 Έχουμε: ΄  

p p p
1 1 1
     

ή  p m m
1 1 1 1
     ή  Δp1 = – 4 kg m/s

και ΄  

p p p
2 2 2
     

ή  p m m
2 2 2 2
       ή  Δp2 = + 4 kg m/s. 

δ.	 Εφαρμόζουμε το Θ.Μ.Κ.Ε. για την κίνη-
ση του συσσωματώματος από τη θέση Α όπου 
έγινε η κρούση μέχρι τη θέση Γ στην οποία 
ακινητοποιείται. Έχουμε:

υ
m2+m1

ΜΕΤΑ

w

T
N

υ= 0

Α Γ
ΜΕΤΑ

K K W W W
T N w    

ή  0
1

2
0 0

1 2

2

1 2
        m m m m gs 

ή  μ = 0,2.
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154.	α.	 Έστω υ το μέτρο της ταχύτητας του 
συσσωματώματος αμέσως μετά την κρούση. 
Το μέτρο α της επιβράδυνσης του συσσωμα-
τώματος κατά την ολίσθηση στο οριζόντιο 
δάπεδο μετά την κρούση υπολογίζεται από τη 
σχέση: F m m

x
  1 2

   ή     m m
1 2

   
ή   m m g m m

1 2 1 2
       ή  � � 3

2
m s/ .

Για την κίνηση του συσσωματώματος από τη 
χρονική στιγμή t = 0  έως τη χρονική στιγμή 
t
1

 στην οποία τελικά ακινητοποιείται, έχουμε:

    t
1
  ή  0

1
  t   ή  υ = 6 m/s. 

β.	 Από την Α.Δ.Ο. για το σύστημα των δύο 
σωμάτων κατά την κρούση, θεωρώντας θετι-
κή τη φορά της ταχύτητας υ1  του σώματος Σ1 
ακριβώς πριν από την κρούση, έχουμε: 
 

p p�� ���� �� ����( ) ( )
� ΄

ή  m m m m
1 1 2 2 1 2
       

ή  m2 = 1 kg.

γ.	 Το ζητούμενο ποσοστό είναι:

 
 

 
 

Q

K

T
100%

ή  
 





W

m m

T

1

2

1

2

100

1 1

2

2 2

2

%   (1).

Από το Θ.Μ.Κ.Ε. για την κίνηση του συσσω-
ματώματος από τη χρονική στιγμή αμέσως 
μετά την κρούση μέχρι τη χρονική στιγμή t1 
έχουμε: K K W W W

T w N��� ���� � � �

ή  0
1

2
0 0

1 2

2     m m W
T

  

ή  W
T
 90 J.

Επομένως, από την (1) προκύπτει: π = 36%.

δ.	 Το διάστημα s που διανύει το συσσωμάτω-
μα μέχρι να ακινητοποιηθεί υπολογίζεται από 
τη σχέση: W m m gs

T
   

1 2
  ή  s = 6 m.

Θα υπολογίσουμε το μέτρο   της ταχύτητας 
του συσσωματώματος τη χρονική στιγμή t

2
,  

εφαρμόζοντας το Θ.Μ.Κ.Ε. για την κίνησή 
του από τη χρονική στιγμή t = 0  έως τη χρο-
νική στιγμή t

2
.

K K W W W
T N w    

 ή  1

2
1 2

2
m m  

             1

2 2
0 0

1 2

2

1 2
m m m m g

s
 

ή    3 2 m s/ .

Επομένως, τη χρονική στιγμή t
2

 ο ρυθμός με-
ταβολής της κινητικής ενέργειας του συσσω-

ματώματος είναι: dK

dt
F  

ή  dK

dt
m m g     

1 2

ή  dK
dt

J s 45 2 / .

155.	 α.	 Για να υπολογίσουμε το μέτρο υ1  
της ταχύτητας του σώματος Σ1 ακριβώς πριν 
από την κρούση, εφαρμόζουμε με το Θ.Μ.Κ.Ε. 
για την κίνησή του από τη θέση Α στη θέση Γ:

K K W W W
T N w    

1 1 1

ή  1

2

1

2
0 0

1 1

2

1 01

2

1 1 1
m m m gs      

ή  υ1 = 4 m/s.

Για να υπολογίσουμε το μέτρο υ2  της ταχύ-
τητας του σώματος Σ2 ακριβώς πριν από την 
κρούση, εφαρμόζουμε το Θ.Μ.Κ.Ε. για την 
κίνησή του από τη θέση Β στη θέση Γ:
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K K W W W
T N w    

2 2 2

ή  1

2

1

2
0 0

2 2

2

2 02

2

1 2 1
m m m g d s        

ή  υ2 = 10 m/s.

β.	 Από την Α.Δ.Ο. του συστήματος των δύο 
σωμάτων κατά την κρούση, θεωρώντας θετική 
τη φορά της ταχύτητας 



υ
1
,  έχουμε:

 

p p�� ���� �� ����( ) ( )
� ΄

ή  m m m m
1 1 2 2 1 2
        ή     3 m s/ .

Δηλαδή το συσσωμάτωμα αμέσως μετά την 
κρούση αρχίζει να κινείται προς το σημείο Α. 
Η μεταβολή της ορμής του σώματος Σ2 εξαι-
τίας της κρούσης είναι:   

p p p
2 2 2
     

ή  p m m
2 2 2 2
  

ή  p m s m s
2

1 3 1 10     kg / kg /

ή  Δp2 = +7 kg m/s.

γ.	 Για να υπολογίσουμε το ολικό διάστημα s 
που διανύει το συσσωμάτωμα μετά την κρού-
ση, εφαρμόζουμε το Θ.Μ.Κ.Ε. για την κίνησή 
του από τη θέση όπου έγινε η κρούση μέχρι τη 
θέση Δ όπου ακινητοποιείται.
K K W W W

T N w       

ή  0 1

2
0 0

1 2

2

2 1 2
        m m m m gs 

ή  s = 4 5, m.

Άρα η απόσταση (ΑΔ) είναι: 

   s s
1

  ή  (ΑΔ) = 0.

δ.	 Το μέτρο α1  της επιβράδυνσης του Σ1 πριν 
από την κρούση είναι: F m

x


1 1


ή  
1 1 1
 m    ή   

1 1 1 1
m g m   ή  �

1

2
1� m s/ .

Το μέτρο α2  της επιβράδυνσης του Σ2 πριν από 
την κρούση είναι: F m

x


2 2
   ή  

2 2 2
 m 

ή   
1 2 2 2
m g m   ή  �

2

2
1� m s/ .

Το χρονικό διάστημα ∆t
1

 στο οποίο κινήθηκε 
το σώμα Σ1 πριν συγκρουστεί με το σώμα Σ2 
προκύπτει από την εξίσωση της ταχύτητας:
  

1 01 1 1
  t   ή  �t

1
1� s.

Το χρονικό διάστημα ∆t
2

 στο οποίο κινήθηκε 
το σώμα Σ2 πριν συγκρουστεί με το σώμα Σ1 
προκύπτει από την εξίσωση της ταχύτητας:
  

2 02 2 2
  t   ή  �t

2
2� s.

Συνεπώς, η χρονική διαφορά με την οποία 
εκτοξεύτηκαν τα δύο σώματα από τις αρχικές 
τους θέσεις είναι:   t t t 

2 1
  ή  Δt = 1 s.

156.	 α.	 Για να υπολογίσουμε το μέτρο υ της 
ταχύτητας του συσσωματώματος αμέσως μετά 
την κρούση, εφαρμόζουμε το Θ.Μ.Κ.Ε. για 
την κίνηση του συσσωματώματος από τη χρο-
νική στιγμή αμέσως μετά την κρούση μέχρι τη 
χρονική στιγμή στην οποία ακινητοποιείται: 

K K W W W
T N w    

ή  0
1

2
0 0

2        M m m gs  

ή  υ = 20 m/s.

β.	 Από την Α.Δ.Ο. για το σύστημα των δύο 
σωμάτων κατά την κρούση έχουμε:
 

p p�� ���� �� ����( ) ( )
� ΄  ή  m M m 

0
  

ή  
0

250 m s/ .

Το ζητούμενο ποσοστό είναι:

 
΄

    

 




   

 

K K

K
100%

ή  
 




  


1

2

1

2

1

2

100
0

2 2

0

2

m M m

m

% 

ή  π = 92%.
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γ.	 Το μέτρο α της επιβράδυνσης του συσσω-
ματώματος είναι:
 F m

x
     ή     m 

ή        m g M m   ή  � � 5
2

m s/ .

Το μέτρο 1  της ταχύτητας του συσσωμα-

τώματος τη χρονική στιγμή t1 προκύπτει: 
    
1 1

t   ή   
1

5 m s/ .

Ο ρυθμός με τον οποίο εκλύεται θερμότητα 
εξαιτίας της τριβής ολίσθησης που ασκεί-
ται στο συσσωμάτωμα τη χρονική στιγμή t1  

είναι: dQ

dt
T

T  
1

  ή  dQ

dt
m g

T     
1

ή  dQ
dt

J sT == 125 / .

δ.	 Έστω   το μέτρο της ταχύτητας του συσ-
σωματώματος αμέσως μετά την κρούση. Από 
την Α.Δ.Ο. για το σύστημα των δύο σωμάτων 
κατά την κρούση έχουμε: 
 

p p�� ���� �� ����( ) ( )
� ΄   ή  m m    

0


ή  






m

M m

0   (1).

Το ζητούμενο ποσοστό είναι:

  


   

 
    

 

K K

K
100%

΄

ή  
 




  


 



1

2

1

2

1

2

100
0

2 2

0

2

m m

m


%

ή  



 

 







 




1 100

2

0

2

 m

m
%

ή, λόγω της (1):   







 1 100

m

m
%

ή   





 m
100%   (2).

Από τη (2) προκύπτει ότι το ποσοστό απώλει-
ας της κινητικής ενέργειας του βλήματος κατά 
την κρούση είναι ανεξάρτητο της ταχύτητας 
του βλήματος ακριβώς πριν από την κρούση. 
Συνεπώς, θα είναι π′ = 92%.

157.	 α.	 Έστω υ το μέτρο της ταχύτητας του 
συσσωματώματος αμέσως μετά την κρούση. 
Από την Α.Δ.Ο. για το σύστημα των δύο σωμά-
των κατά την κρούση, θεωρώντας θετική τη φορά 
της ταχύτητας υ

1
,  έχουμε: 

 

p p�� ���� �� ����( ) ( )
� ΄   

ή m m m m
1 1 2 2 1 2
        ή    5 m s/ .

Επομένως, η κινητική ενέργεια του συσσωμα-
τώματος αμέσως μετά την κρούση είναι:

K m m  1

2
1 2

2   ή  Κ = 75 J.

β.	 Η μεταβολή της ορμής του σώματος Σ2 
εξαιτίας της κρούσης υπολογίζεται από τον 
τύπο:   

p p p
2 2 2
     

ή  p m m
2 2 2 2
  

ή  p m s m s
2

2 5 2 5     kg / kg /

ή  �p m s
2

20� � kg / ,  οπότε: 

p m s
2

20 kg / .

Το μέτρο F  της μέσης δύναμης που ασκήθηκε 
στο σώμα Σ2 από το σώμα Σ1 κατά τη διάρκεια 

της κρούσης είναι: F
p

t





2   ή  F = 1.000 N.  

γ.	 Το ζητούμενο ποσοστό είναι:

 ΄
  

 

  

 

K

K
100%

ή  


 


 




1

2

1

2

1

2

100
1 2

2

1 1

2

2 2

2

m m

m m

%   ή  π = 33,3 %.
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δ.	 Το συνολικό διάστημα s που διανύει το 
συσσωμάτωμα μετά την κρούση υπολογίζεται 
εφαρμόζοντας το Θ.Μ.Κ.Ε. για την κίνησή 
του από τη θέση όπου έγινε η κρούση μέχρι τη 
θέση όπου ακινητοποιείται. Ισχύει:

K K W W W
T N w    

ή  0
1

2
0 0

1 2

2

1 2
� �� � � � �� � � �m m m m gs� �

ή  s = 2,5 m.

158.	 α.	 Το μέτρο υ1  της ταχύτητας του σώ-
ματος Σ1 ακριβώς πριν από την κρούση υπο-
λογίζεται εφαρμόζοντας το Θ.Μ.Κ.Ε. για την  
κίνηση του σώματος Σ1 από τη θέση Α στη 
θέση Γ. Iσχύει:

K K W W W
T N w    

1 1 1

ή  1

2

1

2
0 0

1 1

2

1 0

2

1 1
m m m gs      

ή  
1

4 m s/ .

Από την Α.Δ.Ο. για το σύστημα των δύο σω-
μάτων κατά την κρούση έχουμε:
 

p p�� ���� ����( ) ( )
� ΄   ή  m p

1 1
 

ή  p = 20 kg m/s.

β.	 Το συνολικό διάστημα s που διανύει το 
συσσωμάτωμα από τη θέση Γ, όπου έγινε η 
κρούση, μέχρι τη θέση Δ, όπου ακινητοποιεί-
ται, είναι: s d s� �

1
  ή  s = 2 m.

Από το Θ.Μ.Κ.Ε. για την κίνηση του συσσω-
ματώματος από τη θέση Γ στη θέση Δ έχουμε:
K K W W W

T N w       ή  

0
1

2
0 0

1 2

2

1 1 2
        m m m m gs 

ή  1

2

2

1 2

1 1 2

p

m m
m m gs

�
� �� ��

ή  �
1

2

1 2

2

2

�
�� �
p

m m gs

  ή  μ1 = 0,1.

γ.	 Έχουμε: p = (m1 +m2)υ  ή  υ = 2 m/s. Επο-

μένως:  Q

Q

m m m

m m gs
T


 




  
 

1

2

1

2
1 1

2

1 2

2

1 1 2

ή  Q
QT

1.κ

δ.	 Τη χρονική στιγμή t
1

 έχουμε:

dK

dt
F     ή  dK

dt
  

ή  dK

dt

dQ

dt
     ή  dK

dt
J s�� ��10 / .

159.	 α.	 Έστω υ  η ταχύτητα του συσσωμα-
τώματος αμέσως μετά την κρούση. Εφαρμό-
ζουμε την αρχή διατήρησης της ορμής για το 
σύστημα βλήμα - σώμα Σ κατά την κρούση, 
θεωρώντας θετική τη φορά της ταχύτητας υ0  
του βλήματος πριν από την κρούση.
 

p p�� ���� �� ����( ) ( )
� ΄   ή  m M m 

0
  

ή    4 m s/ .

m

Ο

υ0

Ο

υ

(+)

M m+M

ΠΡΙΝ ΜΕΤΑ
w

T
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Επομένως: K M m  1

2

2   ή  Κ = 32 J.

β.	 Η συνισταμένη των δυνάμεων που ασκού-
νται στο συσσωμάτωμα αμέσως μετά την 
κρούση δρα ως κεντρομόλος δύναμη. 

Επομένως: F F    ή    
 

w
M m 2



  

ή      
 

M m g
M m 2



  ή  Τ = 80 Ν.

γ.	 Το ζητούμενο ποσοστό είναι:

 
΄

    

 




   

 

K K

K
100%

ή  
 




  


1

2

1

2

1

2

100
0

2 2

0

2

m m

m


%

ή  π = 95%.

δ.	 Μετά την κρούση το συσσωμάτωμα ακι-
νητοποιείται στη θέση Γ η οποία βρίσκεται σε 
ύψος h από το οριζόντιο επίπεδο που διέρχεται 
από την κατώτερη θέση Α της τροχιάς του.
Εφαρμόιζοντας την Α.Δ.Μ.Ε για την κίνηση 
του συσσωματώματος μεταξύ των θέσεων Α 
και Γ έχουμε:
E E        ή        U U   (1).

φ

Ο

υ

Α

�

Γ
h

x

βαρU 0

Δ

M m+

υ= 0

βαρU 0

�

ΜΕΤΑ

Θεωρώντας ως επίπεδο μηδενικής βαρυτικής 
δυναμικής ενέργειας το οριζόντιο επίπεδο που 

διέρχεται από το σημείο Α, από την (1) έχου-

με:  1

2
00

2
M m M m gh     

ή  h = 0 8, m.

Έστω φ η μέγιστη γωνία εκτροπής του νήμα-
τος από την αρχική κατακόρυφη θέση του. 
Από το ορθογώνιο τρίγωνο ΟΔΓ έχουμε:

  x


  ή    


h   

ή    1

2
  ή  φ = 60°.

160.	α.	 Έστω υ το μέτρο της ταχύτητας του 
συσσωματώματος αμέσως μετά την κρούση 
και υʹ το μέτρο της ταχύτητάς του στο ανώτε-
ρο σημείο Γ της τροχιάς του.
Η συνισταμένη των δυνάμεων που ασκούνται 
στο συσσωμάτωμα στο σημείο Γ δρα ως κε-
ντρομόλος δύναμη. 

Επομένως: F F    ή    
  

w
m m

1 2

2



  

ή   
    m m

m m g
1 2

2

1 2





  (1).

ΑΑ

Γ

Ο

ʹυ

Δ

w

w

T

Tʹ

Σ2Σ1

Ο

υ0
m2+m1

(+)

υ

υ1

βαρU 0

ΠΡΙΝ ΜΕΤΑ

� �

�

�
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Για να εκτελέσει το συσσωμάτωμα ανακύκλω-
ση, πρέπει να φτάσει στη θέση Γ με το νήμα 
τεντωμένο. Συνεπώς, στη θέση Γ πρέπει να 
ισχύει   0  ή, λόγω της (1): 

m m
m m g

1 2

2

1 2
0

     




  ή    g ,

οπότε:  
min

g   ή   
min

m s5 / .

Από την Α.Δ.Μ.Ε. για τις θέσεις Α και Γ της 
κυκλικής τροχιάς που διαγράφει το συσσωμά-
τωμα μετά την κρούση έχουμε:
E E      

ή  1

2

1

2
1 2

2

1 2

2
m m m m      

min

                                  m m g
1 2

2

ή  υ = 5 m/s.

β.	 Από την Α.Δ.Ο. για το σύστημα των δύο 
σωμάτων κατά την κρούση έχουμε: 
 

p p�� ���� �� ����( ) ( )
� ΄

ή  m m m
1 0 1 2
      ή  

0
20 m/s.

Η μεταβολή της ορμής του σώματος Σ1 εξαιτί-
ας της κρούσης είναι:   

p p p
1
  

ή  p m m
1 1 1 0
     ή  �p

1
7 5� � , kg m/s,

οπότε: p1 7 5, kgm/sΔ .

γ.	 Έχουμε: Q = Kολ(πριν) – Κολ(μετά) 

ή  Q m m m   1

2

1

2
1 0

2

1 2

2    ή  Q = 75 J.

δ.	 Το μέτρο υ1  της ταχύτητας του συσσω-
ματώματος τη χρονική στιγμή στην οποία δι-
έρχεται από τη θέση Δ, όπου το νήμα γίνεται 
οριζόντιο για πρώτη φορά μετά την κρούση, 
υπολογίζεται εφαρμόζοντας την Α.Δ.Μ.Ε. για 
τις θέσεις Α και Δ της κυκλικής κίνησης του 
συσσωματώματος. Έχουμε:

E E      

ή  1

2

1

2
1 2

2

1 2 1

2
m m m m     

                                  m m g
1 2



 ή  
1

15 m s/ .

Ο ρυθμός μεταβολής της κινητικής ενέργειας 
του συσσωματώματος στη θέση Δ είναι:

dK

dt
m m g   1 2 1

   ή  dK
dt

J s�� ��20 15 / .

161.	 α.	 Έστω   το μέτρο της ταχύτητας του 
συσσωματώματος αμέσως μετά την κρούση.
Από την Α.Δ.Μ.Ε. για την κίνηση του συσσω-
ματώματος από τη θέση Α αμέσως μετά την 
κρούση μέχρι τη θέση Γ, όπου το νήμα γίνεται 
για πρώτη φορά οριζόντιο, έχουμε:

E E      

ή  1

2
1 2

2

1 2
m m m m g     

ή    2g   ή    4 m/s.

Α

Ο

w

T

Σ2Σ1

Ο

υ1
m2+m1

(+)

υΣ

υ= 0

βαρU 0

ΠΡΙΝ ΜΕΤΑ

Α

Γ

� �

�

Από την Α.Δ.Ο. για το σύστημα των δύο σω-
μάτων κατά την κρούση έχουμε:
 

p p�� ���� �� ����( ) ( )
� ΄   ή  m m m

1 1 1 2
    

ή  υ1 = 20 m/s.
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β.	 Ο ρυθμός μεταβολής της ορμής του συσ-
σωματώματος αμέσως μετά την κρούση είναι 
ίσος με την κεντρομόλο δύναμη που δρα στο 
συσσωμάτωμα στη θέση Α. Επομένως, είναι:

dp

dt
F    ή  dp

dt

m m


 1 2

2



ή  dp
dt

== 200 kgm/s2.

γ.	 Για να υπολογίσουμε το μέτρο υ της ταχύ-
τητας του συσσωματώματος στη θέση όπου 
το νήμα σχηματίζει για πρώτη φορά μετά την 
κρούση γωνία   60  με την αρχική κατα-
κόρυφη θέση του, εφαρμόζουμε την Α.Δ.Μ.Ε. 
για τις θέσεις Α και Δ: E E      

ή  1

2

1

2
1 2

2

1 2

2
m m m m     

                                  m m gh
1 2

ή  1

2

1

2

2 2     g x

ή   
2 2

2   g x

ή    2 2
2    g  

ή       
2

2 1g   ή    8 m s/ .

φ

Ο

Α

�

Δ

h

x

�

υ
Σ

m2+m1

T

wx

υ

wyφ

w

βαρU 0

Στη θέση Δ η συνισταμένη των δυνάμεων  
που ασκούνται στο συσσωμάτωμα κατά την 
ακτινική διεύθυνση δρα ως κεντρομόλος δύ-
ναμη. Επομένως: 

 

F F 

ή  T w
m m

y
 

 1 2

2



ή  T m m g
m m

   
 

1 2

1 2

2






ή  T m m g
m m

   
 

1 2

1 2

2






ή  Τ = 150 Ν.

162.	 α.	 Από το Θ.Μ.Κ.Ε. για την κίνηση του 
σώματος Σ1 μεταξύ των θέσεων Δ και Γ πριν 
από την κρούση έχουμε:

K K W W W
T N w    

1 1 1

ή  1

2

1

2
0 0

1 1

2

1 01

2

1
m m m gd      

ή  υ1 = 6 m/s.

β.	 Από την Α.Δ.Μ.Ε. για την κίνηση του σώ-
ματος Σ2 από τη θέση Α έως τη θέση Γ έχουμε: 
E E      

ή  1

2

1

2
2 02

2

2 2 2

2
m m gR m     ή  υ2 = 5 m/s.

γ.	 Το μέτρο υ της ταχύτητας του συσσωμα-
τώματος αμέσως μετά την κρούση υπολογίζε-
ται εφαρμόζοντας την Α.Δ.Μ.Ε. για τις θέσεις 
Γ και Α της κυκλικής κίνησης του μετά την 
κρούση.
E E      

ή  1

2
1 2

2

1 2
m m m m gR    

ή    4 m s/ .

Από την Α.Δ.Ο. για το σύστημα των δύο σω-
μάτων κατά την κρούση, θεωρώντας θετική τη 
φορά της ταχύτητας 



υ1  του σώματος Σ1 ακρι-
βώς πριν από την κρούση, έχουμε:
 

p p�� ���� �� ����( ) ( )
� ΄
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ή  m m m m
1 1 2 2 1 2
     

ή  m
m
1

2

4 5== , .

δ.	 Το ζητούμενο ποσοστό είναι:

 ΄
    

 




   

 

K K

K
100%

ή  


 
 

 


















1

1

2

1

2

1

2

100
1 2

2

1 1

2

2 2

2

m m

m m

%

ή  π = 52,94%.

163.	 α.	 Για να υπολογίσουμε το μέτρο υ της 
ταχύτητας του συσσωματώματος αμέσως μετά 
την κρούση, εφαρμόζουμε το Θ.Μ.Κ.Ε. για 
την κίνησή του από τη χρονική στιγμή αμέσως 
μετά την κρούση έως τη χρονική στιγμή στην 
οποία ακινητοποιείται στιγμιαία. Είναι:
K K W W W

w        ή  

0
1

2
0

1 2

2

1 2 2
       m m m m g s  

                                   m m g s
1 2 2



ή  υ = 3 m/s.

β.	 Από την Α.Δ.Ο. για το σύστημα των δύο 
σωμάτων κατά την κρούση έχουμε:
 

p p�� ���� �� ����( ) ( )
� ΄   ή  m m m

1 1 1 2
   

ή  
1

5 m/s.

Επομένως: ΄
�

�� ���� �� ����

���

�
�

�� � � �K K

K
100%

ή  
 




  


1

2

1

2

1

2

100
1 1

2

1 2

2

1 0

2

m m m

m

%  (1).

Από το Θ.Μ.Κ.Ε. για την κίνηση του σώματος 
Σ1 πριν από την κρούση έχουμε:

K K W W W
w T N��� ���� � ��

1 1 1

ή   1
2

1

2
1 1

2

1 0

2

1 1
m m m g s    

                                     m g s
1 1

0

ή  
0

10 m s/ .

Με αντικατάσταση των τιμών στην (1) προκύ-
πτει: π = 10%. 

γ.	 Έχουμε: dp

dt
F    ή  dp

dt
w T   

ή  dp

dt
m m g   1 2

   m m g
1 2

  

ή  dp
dt

m 75 kg /s2.

δ.	 Έχουμε: Q Q Q Q    
1

ή  Q m m m     1

2

1

2
1 1

2

1 2

2

              


  
 

 

m g s

m m g s

1 1

1 2 2

ή  Qολ = 120 J.

164.	 α.	 Από το Θ.Μ.Κ.Ε. για την κίνηση του 
σώματος Σ1 πριν από την κρούση έχουμε:

K K W W W
w T N   

1 1 1

ή  1

2
0 0

1 1

2

1 1 1 1 1
m m g s m g s     

ή  υ1 = 5 m/s.

β.	 Έστω   το μέτρο της ταχύτητας του συσ-
σωματώματος αμέσως μετά την κρούση. Από 
την Α.Δ.Ο. για το σύστημα των δύο σωμάτων 
κατά την κρούση έχουμε:   

p p�� ���� �� ����( ) ( )
� ΄

ή  m m m
1 1 1 2
       ή    4 m/s.
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Επομένως: Qκ = Κολ(πριν) – Κολ(μετά) 

ή  Q m m m     1

2

1

2
1 1

2

1 2

2



ή  Qκ = 10 J.

γ.	 Επειδή    ,  συμπεραίνουμε ότι μετά 
την κρούση το συσσωμάτωμα κινείται στο κε-
κλιμένο επίπεδο με σταθερή ταχύτητα μέχρι 
να φτάσει στη βάση του. Συνεπώς, ισχύει: 

F
x
 0

ή  m m g
1 2
       m m g

1 2
0

ή      ή  
3
3

μ .

δ.	 Το διάστημα s2 που διανύει το συσσωμά-
τωμα από τη χρονική στιγμή αμέσως μετά 
την κρούση μέχρι τη χρονική στιγμή κατά την 
οποία φτάνει στη βάση του κεκλιμένου επιπέ-
δου υπολογίζεται από τον τύπο: 

s t
2
    ή  s

2
5= m.

Έστω h το αρχικό ύψος του σώματος Σ1 πάνω 
από τη βάση του κεκλιμένου επιπέδου. Ισχύει:

 

h

s s
1 2

  ή  h = 5 m.

Το ζητούμενο ποσοστό προκύπτει:

  




 


Q Q Q

U

T
1

100%

ή      


1 1

2
1

1 1 1 1 1

2

m gh
m g ms   

              


1

2
1 2

2

1 2 2
m m m m g s    

ή  π = 92,5%.

165.	 α.	 Από την Α.Δ.Μ.Ε. για την κυκλική 
κίνηση του σώματος Σ1 πριν από την κρούση 

έχουμε: E E      

ή  m gh m
1 1 1

21

2
 

ή  m g m
1 1 1

2
1

1

2
       ή  

1
6 m/s.

Επειδή m m
1 2
=  και η κρούση είναι κεντρική 

και ελαστική, τα σώματα ανταλλάσσουν ταχύ-
τητες κατά τη διάρκεια της κρούσης. Επομέ-
νως: υ′2 = υ1 = 6 m/s.

β.	 Έστω υ το μέτρο της ταχύτητας του σώμα-
τος Σ2 ακριβώς πριν από την κρούση του με το 
σώμα Σ3. 
Από το Θ.Μ.Κ.Ε. για την κίνηση του σώμα-
τος Σ2 από τη χρονική στιγμή αμέσως μετά την 
κρούση του με το σώμα Σ1 μέχρι τη χρονική 
στιγμή ακριβώς πριν από την κρούση του με 
το σώμα Σ3 έχουμε:

K K W W W
T w N    

2 2 2

ή  1

2

1

2
0 0

2

2

2 2

2

1 2
m m m gs      

ή    5 m/s.

Έστω υΣ η ταχύτητα του συσσωματώματος 
αμέσως μετά την πλαστική κρούση του σώ-
ματος Σ2 με το σώμα Σ3. Από την Α.Δ.Ο. για 
το σύστημα των σωμάτων Σ2 και Σ3 κατά την 
κρούση έχουμε: ΄

 

p p�� ���� �� ����( ) ( )
�

ή  m m m
2 2 3
       ή  υΣ = 4 m/s.

γ.	 Για να υπολογίσουμε τη μέγιστη συσπεί-
ρωση ∆

max
 του ελατηρίου, εφαρμόζουμε το 

Θ.Μ.Κ.Ε. για την κίνηση του συσσωματώμα-
τος από τη χρονική στιγμή αμέσως μετά την 
πλαστική κρούση του σώματος Σ2 με το σώμα 
Σ3 μέχρι τη χρονική στιγμή στην οποία το συσ-
σωμάτωμα ακινητοποιείται στιγμιαία για πρώ-
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τη φορά μετά την κρούση του Σ2 με το Σ3. 

K K W W W W
T F w N  

    

ή  0
1

2
2 3

2

2 2 3
      m m m m g

max
  

                                        1

2
0 0

2

k
max



ή  15 10 40 0
2� � 

max max� � � � �  από την 

οποία προκύπτει τελικά: ��max
4
3

m.Δ

δ.	 Έχουμε: Q Q Q Q
T    1 2 3

  

ή  Q m gs m m m       1 2 2

2

2 3

21

2

1

2


               
2 2 3

m m g
max

ή  Q
136
3

J.ολ

166.	 α.	 Έστω υ1  η ταχύτητα του κιβωτίου 
αμέσως μετά την κρούση. Από την Α.Δ.Ο. για 
το σύστημα των δύο σωμάτων κατά την κρού-
ση, θεωρώντας θετική τη φορά της ταχύτητας 
του βλήματος πριν από την κρούση, έχουμε: 
 

p p�� ���� �� ����( ) ( )
� ΄   ή  m M m  

0 1
 

ή  υ1 = 4 m/s.

β.	 Έχουμε: Q         

ή  Q m m     





1

2

1

2

1

2
0

2

1

2 2

ή  Qκ = 2.960 J.

γ.	 Από το Θ.Μ.Κ.Ε. για την κίνηση του κιβω-
τίου από τη χρονική στιγμή αμέσως μετά την 
κρούση μέχρι τη χρονική στιγμή στην οποία 
ακινητοποιείται έχουμε: Κτελ – Καρχ = WT 

ή   1

2
1

2
M W

T
   ή  W   40 J.

Το ποσό θερμότητας που εκλύεται κατά την 
ολίσθηση του κιβωτίου στο δάπεδο λόγω της 
τριβής ολίσθησης που ασκείται από το δάπεδο 
είναι: Q WT T== == 40 J.

δ.	 Έχουμε: W Ts
T
=   ή  T = 25 N.

Ο ρυθμός μεταβολής της ορμής του κιβωτίου 
κατά την ολίσθησή του στο δάπεδο είναι:
dp

dt
F





    ή  dp

dt
T    ή  dp

dt
kg  25 m/s2.

167.	 α.	 Το μέτρο υ1 της ταχύτητας του σώ-
ματος Σ1 ακριβώς πριν από την κρούση υπο-
λογίζεται εφαρμόζοντας το Θ.Μ.Κ.Ε. για τις 
θέσεις Α και Γ της κίνησής του πριν από την 
κρούση έχουμε:
     W W W

T N w
1 1 1

ή  1

2

1

2
0 0

1 1

2

1 0

2

1 1
m m m gs      

ή  υ1 = 8 m/s.

β.	 Το μέτρο 1  της ταχύτητας του σώματος 
Σ1 αμέσως μετά την κρούση υπολογίζεται 
εφαρμόζοντας το Θ.Μ.Κ.Ε. για την κίνηση 
του σώματος Σ1 μετά την κρούση από τη θέση 
Γ πίσω στη θέση Α.
     W W W

T N w
1 1 1

ή  0
1

2
0 0

1 1

2

1 1
    m m gs 

ή  υ′1 = 6 m/s.

γ.	 Έστω  2  η ταχύτητα του σώματος Σ2 αμέ-
σως μετά την κρούση. Από την Α.Δ.Ο. για το 
σύστημα των δύο σωμάτων κατά την κρούση, 
θεωρώντας θετική τη φορά της ταχύτητας υ

1
,  

έχουμε:
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΄

 

p p�� ���� �� ����( ) ( )
�  

ή  m m m m
1 1 2 2 1 1 2 2
       

ή    
2

2 5, m/s.

Η κινητική ενέργεια του συστήματος των δύο 
σωμάτων ακριβώς πριν από την κρούση είναι:

      1

2

1

2
1 1

2

2 2

2
m m

ή  ��� ����� � �104 J.

Η κινητική ενέργεια του συστήματος των δύο 
σωμάτων αμέσως μετά την κρούση είναι:

Κολ(μετά)   
1

2

1

2
1 21

2

2

2
m m 

ή  Κολ(μετά) = 30,5 J.

Επειδή Kολ(πριν) > Κολ(μετά), η κρούση μεταξύ 
των δύο σωμάτων είναι ανελαστική.

δ.	 Η απώλεια της μηχανικής ενέργειας του 
σώματος Σ1 εξαιτίας της κρούσης ισούται με 
την απώλεια της κινητικής του ενέργειας εξαι-
τίας της κρούσης. 

� ��� 1� � � Κ1(πριν) – Κ1(μετά)

ή     
1

1

2

1

2
1 1

2

1 1

2

    m m

ή  Εαπ(Σ1)
 = 14 J.

168.	 α.	 Για να υπολογίσουμε το μέτρο υ1 της 
ταχύτητας του σώματος Σ1 ακριβώς πριν από 
την κρούση, εφαρμόζουμε την Α.Δ.Μ.Ε. για 
τις θέσεις Α και Γ της κυκλικής τροχιάς του, 
όπως φαίνεται στο παρακάτω σχήμα.

Σ
2

Σ
1

υ
1

Ο�
Α

�

Γ

βαρ
U 0

       

ή        U U

ή  0
1

2
0

1 1 1

2  m g m 

ή  
1

2 g   ή  υ1 = 10 m/s.

β.	 Για να υπολογίσουμε το μέτρο 1  της τα-
χύτητας του Σ1 αμέσως μετά την κρούση, θα 
εφαρμόσουμε την Α.Δ.Μ.Ε. για τις θέσεις 
Γ και Δ της κυκλικής τροχιάς που διαγράφει 
μετά την κρούση μέχρι να ακινητοποιηθεί 
στιγμιαία. 

φ

Σ2 Σ2

Ο

s

w2

T2

N2
ʹυ1

ʹυ2

x

h
Δ υ= 0

�

Γ Ζ

�
Σ1

βαρU 0

ΜΕΤΑ

υ= 0

          ή  1

2
1 1

2

1
m m gh    

ή   
1

2gh   ή     
1

2g x

ή      
1

2 1g   ή  υ′1 = 4 m/s.
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γ.	 Έστω 2  το μέτρο της ταχύτητας του σώ-
ματος Σ2 αμέσως μετά την κρούση. Από την 
Α.Δ.Ο. για το σύστημα των δύο σωμάτων 
κατά την κρούση, θεωρώντας θετική τη φορά 
της ταχύτητας υ

1
,  έχουμε:  

p p�� ���� �� ����( ) ( )
� ΄   

ή  m m m
1 1 1 1 2 2
        ή   

2
2 m/s.

Επομένως:     
1

2
1 1

2
m

ή      50 J   και

Κολ(μετά)   
1

2

1

2
1 1

2

2 2

2
m m 

ή  Κολ(μετά) =  22 J.

Επειδή Kολ(μετά) ≠ Κολ(πριν), η κρούση είναι ανε-
λαστική.

δ.	 Από το Θ.Μ.Κ.Ε. για την κίνηση του σώ-
ματος Σ2 μετά την κρούση από τη θέση Γ, όπου 
έγινε η κρούση, μέχρι τη θέση Ζ, όπου ακινη-
τοποιείται, έχουμε:

     W W W
T N w

2 2 2

ή  0
1

2
0 0

2 2

2

2
    m m gs    ή  s = 1 m.

169.	 α.	 Οι ορμές  ′p
1

 και  ′p
2
 των σφαιρών Σ1 

και Σ2 αντίστοιχα αμέσως μετά την κρούση και 
η ορμή p

1
 της σφαίρας Σ1 πριν από την κρού-

ση φαίνονται στο παρακάτω σχήμα.

ʹp
1

ʹp
2

p
1

Σ1 Σ2

Σ1

Σ2

Η ορμή του συστήματος των δύο σφαιρών δια-
τηρείται σταθερή κατά την κρούση.

 

p p�� ���� �� ����( ) ( )
� ΄   ή    

p p p
1 1 2
      (1).

Σύμφωνα με τη σχέση (1), από το διανυσμα-
τικό άθροισμα των ορμών  ′p

1
 και  ′p

2
 των δύο 

σφαιρών μετά την κρούση προκύπτει η ορμή 


p
1
 της σφαίρας Σ1 πριν από την κρούση.

φ

ʹp
1

ʹp
2

p
1

Συνεπώς, για το μέτρο της ορμής p
1
 της σφαί-

ρας Σ1 πριν από την κρούση ισχύει:

p p p p p
1 1

2

2

2

1 2
2        (2),  όπου φ η 

γωνία που σχηματίζουν τα διανύσματα των 
ορμών  ′p

1
 και  ′p

2
.  

Από τη (2) έχουμε: p p p p p
1

2

1

2

2

2

1 2
2         

ή  m m m
1 1

2

1 1

2

2 2

2

          

                      2
1 1 2 2

m m  

ή  m m m
1

2

1

2

1

2

1

2

2

2

2

2       2
1 2 1 2

m m   

και επειδή m m
1 2
= ,  προκύπτει τελικά:

     
1

2

1

2

2

2

1 2
2       (3).

Επειδή η κρούση είναι ελαστική, η κινητική 
ενέργεια του συστήματος διατηρείται σταθερή 
κατά την κρούση. Ισχύει: Κολ(πριν) = Κολ(μετά) 

ή  1

2

1

2

1

2
1 1

2

1 1

2

2 2

2
m m m    

ή    
1

2

1

2

2

2    (4).

Από τις (3) και (4) με αφαίρεση κατά μέλη 
προκύπτει ότι: 0 2

1 2
      και επειδή 

 
1

0  και  
2

0,  έχουμε τελικά:   0   
ή  φ = 90°.
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β.	 Από τη σχέση (4) βρίσκουμε: υ1 = 5 m/s.

γ.	 Έχουμε: ΄
 



  

 




1

1

100%

ή  



 


1

2

1

2

100
1 1

2

1 1

2

m

m

%   ή  π = 36%.

δ.	 Το μέτρο της μεταβολής της ορμής της 
σφαίρας Σ2 εξαιτίας της κρούσης είναι: 

  

p p p
2 2 2
     ή  � 

p p
2 2
� � ,

οπότε:  

p p
2 2
 | |   ή  p m

2 2 2
 

ή  �p
2

8� kg m/s.

Επειδή η ορμή του συστήματος των δύο σφαι-
ρών διατηρείται σταθερή κατά την κρούση, 
έχουμε: 



p  0   ή    



p p
1 2

0 
ή  � �

 

p p
1 2
� � ,   οπότε:   

p p
1 2


ή  �p1 8 kgm/sΔ .

170.	 α.	 Από την Α.Δ.Ο. για το σύστημα των 
δύο σφαιρών στον άξονα ′x x  έχουμε:

΄
 

p p
x x�� ���� �� ����� � � ��   ή  m m m

x x1 1 1 1 2 2
       

ή  m m m
1 1 1 1 2 2
      

ή  20 3
1 2

      (S.I.)  (1).

φ

φ

υ1
Σ1 Σ2

ʹυ1

ʹυ2

Σ2

Σ1

θ

θ
ʹυ2x

ʹυ2y

ʹυ1x

ʹυ1y

Από την Α.Δ.Ο. για το σύστημα των δύο σφαι-
ρών στον άξονα yʹy έχουμε:
 

p p
y y�� ���� �� ����� � � �� ΄

ή  0
1 1 2 2

  m m   

ή      
1 2

  ή    
2 1

3   (2).

Επιλύοντας το σύστημα των εξισώσεων (1) και 
(2) βρίσκουμε: υ′1 = 5 m/s  και  2 5 3 m/s.υ

β.	 Για τις κινητικές ενέργειας του συστήμα-
τος των δύο σφαιρών πριν και μετά την κρού-

ση έχουμε:     
1

2
1 1

2
m

ή      50m (S.I.)

και   Κολ(μετά)   
1

2

1

2
1 1

2

2 2

2
m m 

ή  Κολ(μετά) = 50m (S.I.).

Επειδή Kολ(πριν) = Κολ(μετά), η κρούση είναι ελα-
στική.

171.	 α.	 
1

4 m/s.

	 β.   � � �45 .

γ.	 �p �1 2 2, kg m/s.

δ.	 F = 60 2 N.

172.	 α.	 
2

10 m/s.

	 β.	 � � �60 .

γ.	 �p �1 kg m/s.

δ.	 �t � � �
5 10

3
s.

173.	 α.	 Ελαστική.	 β.   F = 98 N.
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174.	 α.	 Έστω υ  η ταχύτητα του συσσωμα-
τώματος μετά την κρούση.

υ1

υ2

Σ1

Σ2

υy

υx

θ
x ́ x ́ x x 

y ́

y y 

υ

Σ2+Σ1

y ́

Αναλύουμε την ταχύτητα υ  του συσσωμα-
τώματος στις συνιστώσες υx  και υ

y
.  Εφαρ-

μόζουμε την Α.Δ.Ο. για το σύστημα των δύο 
σωμάτων στον άξονα xʹx.
 

p p
x x�� ���� �� ����� � � �� ΄   ή  m m m

x1 1 1 2
   

ή  
x
 6 m/s.

Εφαρμόζουμε την Α.Δ.Ο. για το σύστημα των 
δύο σωμάτων στον άξονα yʹy:
 

p p
y y�� ���� �� ����� � � �� ΄   ή  m m m

y2 2 1 2
   

ή  
y
 8 m/s.  

Το μέτρο υ της ταχύτητας του συσσωματώμα-

τος αμέσως μετά την κρούση προκύπτει:

   
x y

2 2   ή  υ = 10 m/s.

Έστω θ η γωνία που σχηματίζει η ταχύτητα υ  
με τον άξονα xʹx. 

Ισχύει: 



 y

x

  ή  
4
3

εφθ .

β.	 Έχουμε: ΄Q K K        

ή  Q m m m m       1

2

1

2

1

2
1 1

2

2 2

2

1 2

2

ή  Qκ = 312 J.

γ.	 Η μεταβολή της ορμής της σφαίρας Σ1 
εξαιτίας της κρούσης στον άξονα xʹx είναι:

  

p p p
x x x1 1 1
        ή, αλγεβρικά:

p m m
x x1 1 1 1
     ή  �p

x1
24� � kg m/s.

Η μεταβολή της ορμής της σφαίρας Σ1 εξαιτίας 
της κρούσης στον άξονα yʹy είναι:

  

p p p
y y y1 1 1
        ή, αλγεβρικά:

p m
y y1 1

0    ή  �p
y1

16� � kg m/s.

Το διάνυσμα της μεταβολής της ορμής της 
σφαίρας Σ1 εξαιτίας της κρούσης φαίνεται στο 
παρακάτω σχήμα.

p1xΔ

p1yΔp
1

Δ

Το μέτρο της μεταβολής της ορμής της σφαί-
ρας Σ1 εξαιτίας της κρούσης προκύπτει:

   p p p
x y1 1

2

1

2

     
 ή  �p

1
832 28 8� � , kg m/s.

Άρα: F
p

t
1

1�
�
�

  ή  F N1 2 880== . .

175.	 α.	 Από την Α.Δ.Ο για το σύστημα των 
δύο σφαιρών στον άξονα yʹy έχουμε:
 

p p
y y�� ���� �� ����� � � �� ΄  ή  m m m

y y2 2 1 2
      

ή  m m m
2 2 1 2
       ή  m

m
1

2

1
2

== .

υ1

υ2

θφ

Σ2

Σ1
υx

υy
υ

υ2x

υ2y

φ
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β.	 Από την Α.Δ.Ο για το σύστημα των δύο 
σφαιρών στον άξονα xʹx έχουμε:
 

p p
x x�� ���� �� ����� � � �� ΄

ή  m m m m
x x1 1 2 2 1 2

     
ή  m m m m

1 1 2 2 1 2
      

ή  υ1 = 6 m/s.

γ.	 Το ζητούμενο ποσοστό προκύπτει:

 ΄
    

 




   

 

 


100%

ή  


 
 

 


















1

1

2

1

2

1

2

100
1 2

2

1 1

2

2 2

2

m m

m m

%

ή  100
3

%.π

176.	 α.	 Το μέτρο υ της ταχύτητας του συσ-
σωματώματος υπολογίζεται εφαρμόζοντας το 
Θ.Μ.Κ.Ε. για την κίνησή του από τη χρονική 
στιγμή αμέσως μετά την κρούση μέχρι τη χρο-
νική στιγμή στην οποία ακινητοποιείται:

      W W W
w N

ή  0
1

2
0 0

2        m M m M gs 

ή  υ = 10 m/s.

β.	 Από την Α.Δ.Ο. για το σύστημα βλήμα - 

σώμα Σ στον άξονα xʹx κατά την κρούση έχουμε:
 

p p
x x�� ���� �� ����� � � �� ΄   ή  m m M

x
 

0
  

ή  m m M  
0

     ή  
0

400 m/s.

Η μεταβολή της ορμής του βλήματος στον 
άξονα xʹx εξαιτίας της κρούσης είναι:

  

p p p
x x x    , , ,
    

ή  p m m
x   

,
 

0

ή  �p
x��,
� �19 kg m/s.

Η μεταβολή της ορμής του βλήματος στον 
άξονα yʹy εξαιτίας της κρούσης είναι: 

  

p p p
y y y   , , ,
    

ή  p m
y  

,
 0

0

ή  �p
y��,
� �20 3 kg m/s.

Το μέτρο της μεταβολής της ορμής του βλήμα-
τος εξαιτίας της κρούσης προκύπτει:

   p p p
x y       , ,

2 2

ή  p  1561 kg m/s

ή  Δpβλ = 39,5 kg m/s.

γ.	 Έχουμε: Q         

ή  Q m  1

2
0

2   ή  Qολ = 8.000 J.

177.	 α.	 Έστω υ το μέτρο της ταχύτητας του 
συσσωματώματος αμέσως μετά την κρούση. 
Από την Α.Δ.Ο. για το σύστημα βλήμα - σώμα 
Σ στον άξονα xʹx κατά την κρούση, θεωρώ-
ντας θετική τη φορά προς τα δεξιά, έχουμε:
 

p p
x x�� ���� �� ����� � � �� ΄  

ή  m M m M
x

  
0 1
   

ή  m M m M   
0 1

   
ή  υ = 6 m/s.
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β.	 Το ζητούμενο ποσοστό προκύπτει:

�
�� ���� �� ����

�� ����

�
�

�� � � �

� �

� �

�
100%

΄

ή    
 






   
















1

2

1

2

1

2

1

2

100
0

2

1

2 2

0

2

m M M m

m

%

ή  π = 99,2%.

γ.	 Η ορμή του σώματος Σ μεταβάλλεται μόνο 
στον άξονα xʹx. Έχουμε:

  
 

p p
x


,

  ή     

  

p
x x

    p p
, , 

ή    p   
1
  ή  � �p � �8 8, kg m/s,

οπότε: p 8 8, kgm/sΔ Σ .

δ.	 Η ορμή του συστήματος σώμα Σ - βλήμα 
διατηρείται στον άξονα xʹx και μεταβάλλεται 
στον άξονα yʹy κατά τη διάρκεια της κρούσης. 

Η μεταβολή της ορμής του συστήματος σώμα 
Σ - βλήμα στον άξονα yʹy κατά τη διάρκεια της 
κρούσης ισούται με τη μεταβολή της ορμής 
του βλήματος στον άξονα yʹy:

  

p p
y 

,
  ή    

p
y y        p p

, ,

ή  p m
y  0

0
,  οπότε: p m  

0
  

ή  p 10 3 kgm/s.Δ ολ

ε.	 Το συνολικό διάστημα s που διανύει το 
συσσωμάτωμα στο οριζόντιο δάπεδο μετά 
την κρούση υπολογίζεται εφαρμόζοντας το 
Θ.Μ.Κ.Ε. για την κίνησή του από τη χρονική 
στιγμή αμέσως μετά την κρούση μέχρι τη χρο-
νική στιγμή στην οποία ακινητοποιείται:

      W W W
w N

ή  0
1

2
0 0

2        m M m M gs 

ή  s = 4,5 m.
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178.	 α.	 Έστω  1  και  2  οι ταχύτητες 
των σωμάτων Σ1 και Σ2 αντίστοιχα αμέσως 
μετά την κρούση.

Από την εφαρμογή του Θ.Μ.Κ.Ε. για την κί-
νηση του σώματος Σ2 από τη χρονική στιγμή 
αμέσως μετά την κρούση μέχρι τη χρονική 
στιγμή στην οποία ακινητοποιείται έχουμε: 
� �

2 2 2 2 2��� ���� � � �� � � �W W W
T w N

ή  0
1

2
0 0

2 2

2

2 2 2
    m m gs 

ή  ′ =υ2 10 m/s.

β.	 Για την αλγεβρική τιμή της ταχύτητας  2  
του σώματος Σ2 αμέσως μετά την κρούση 

έχουμε:  


 
2

1

1 2

1

2m

m m   
ή  10

2
20

1

1 2

�
�
m

m m

ή  m
m
1

2

= 1
3

.

γ.	 Η ταχύτητα του σώματος Σ1 μετά την 
κρούση είναι: 

  


 
1

1 2

1 2

1

m m

m m
  ή    

1
10 m s.

Συνεπώς, μετά την κρούση το σώμα Σ1 κινεί-
ται προς την αντίθετη κατεύθυνση.

Γ
Α

Δ w1

T1

N1

w2

T2

N2

s1 s2

ʹυ2
ʹυ1

m1 m2

ΜΕΤΑ

υ= 0 υ= 0

Όπως φαίνεται στο σχήμα, η μέγιστη από-
σταση d μεταξύ των σωμάτων μετά την 
κρούση είναι d s s� �

1 2
.   

Επομένως: s d s
1 2
    ή  s

1
25= m.

Από την εφαρμογή του Θ.Μ.Κ.Ε. για την κί-
νηση του σώματος Σ1 μετά την κρούση μετα-
ξύ των θέσεων Α και Δ έχουμε: 

� �
1 1 1 1 1��� ���� � � �� � � �W W W

T w N

ή  0
1

2
0 0

1 1

2

1 1 1
     m m gs 

ή  μ1 = 0,2.

δ.	 Ο ρυθμός με τον οποίο εκλύεται θερμό-
τητα τη χρονική στιγμή t

1
 εξαιτίας της τρι-

βής ολίσθησης που ασκείται στο σώμα Σ1 
από το δάπεδο είναι: 
dQ

dt
T

1
  (1) όπου υ μέτρο της ταχύτητας 

του σώματος Σ1 τη χρονική στιγμή t
1
.  

Από τη σχέση (1) έχουμε: dQ

dt
m g  

1 1

ή  dQ

dt
m g

p

m
� �

1 1

1   
ή  dQ
dt

J s= 30 / .

ε.	 Έστω α1  το μέτρο της επιβράδυνσης του 
σώματος Σ1 μετά την κρούση. 
Από τον θεμελιώδη νόμο της μηχανικής 
έχουμε: F m

x1 1 1   
  
ή  T m

1 1 1
� �

ή  � �
1 1 1 1
m g m�   ή  � �

1 1
� g   ή  �

1
2� m/s

2
.

Έστω ′t
1

 η χρονική στιγμή στην οποία ακι-
νητοποιείται το σώμα Σ1 μετά την κρούση. 
Έχουμε:     

1 1 1
t   ή  0

1 1 1
    t   

ή   


t
1

1

1



   
ή  � �t

1
5 s.

Έστω α2  το μέτρο της επιβράδυνσης με την 
οποία κινείται το σώμα Σ2 μετά την κρούση. 



Απαντήσεις – Λύσεις θεµάτων

60

Έχουμε: F m
x2 2 2   

  
ή  T m

2 2 2
� �

ή  � �
2 2 2 2
m g m�   ή  � �

2 2
� g

ή  �
2

5� m/s
2
.

Έστω ′t
2

 η χρονική στιγμή στην οποία ακινη-
τοποιείται το σώμα Σ2 μετά την κρούση. Έχου-
με:     

2 2 2
t   ή  0

2 2 2
    t

ή   


t
2

2

2



   
ή  � �t

2
2 s.

Άρα η ζητούμενη χρονική διαφορά είναι:

t t t   
1 2

  ή  Δt = 3 s.

179.	 α.	 Έστω  1  και  2  οι ταχύτητες των 
σωμάτων Σ1 και Σ2 αντίστοιχα μετά την κρού-
ση. 

w1

T1
N1

w2

T2
N2

s1 s2

ʹυ2ʹυ1

Σ1 Σ2

ΜΕΤΑ

υ= 0 υ= 0

Για να υπολογίσουμε το μέτρο της ταχύτητας 
 1 του σώματος Σ1 αμέσως μετά την κρούση, 

εφαρμόζουμε το Θ.Μ.Κ.Ε. για την κίνηση 
του σώματος Σ1 από τη χρονική στιγμή αμέ-
σως μετά την κρούση μέχρι τη χρονική στιγμή 
στην οποία ακινητοποιείται. Είναι:
� �

1 1 1 1 1��� ���� � � �� � � �W W W
T w N   

ή

0
1

2
0 0

1 1

2

1 1 1
    m m gs 

  
ή  ′ =υ1 4 m s.

β.	 Έστω α2 το μέτρο της επιβράδυνσης με  
την οποία κινείται το Σ2 μετά την κρούση. 
Έχουμε: �F m

x
�

2 2
�   ή  T m

2 2 2
� �

ή  � �
2 2 2 2
m g m�   ή  � �

2 2
� g  (1).

Για την επιβραδυνόμενη κίνηση του σώματος 
Σ2 από τη χρονική στιγμή t = 0  αμέσως μετά 
την κρούση μέχρι τη χρονική στιγμή t = 2 s  
στην οποία ακινητοποιείται ισχύουν:  
   

2 2
t   ή  0

2 2
   t   

ή    
2 2

t   (2)  και  s t t
2 2

2

2

1

2
    (3).

Με αντικατάσταση της (2) στην (3) έχουμε: 

s t t
2 2

2

2

21

2
� �� �

  
ή  s t

2

2

2

2
�
�

  
ή  �

2
2� m/s

2
.

Από τη (2) προκύπτει ότι ′ =υ2 4 m s  και από 
την (1) ότι μ2 = 0,2.

γ.	 Για τις αλγεβρικές τιμές ��1  και ��2  των 
ταχυτήτων των σωμάτων Σ1 και Σ2 αντίστοιχα 
αμέσως μετά την κρούση ισχύουν: 

  


 
1

1 2

1 2

m m

m m
1
  (4),

 


 
2

1

1 2

1

2m

m m
  (5).

Με διαίρεση κατά μέλη των (5) και (4) προκύ-

πτει: 








2

1

1

1 2

2m

m m
  (6).

Διακρίνουμε τις εξής περιπτώσεις: 

1η περίπτωση

Αν τα σώματα Σ1 και Σ2 αμέσως μετά την 
κρούση κινούνται προς την ίδια κατεύθυνση, 

τότε 





2

1

1  και από την (6) προκύπτει ότι 

m m
1 2
� � ,  που είναι άτοπο.

2η περίπτωση

Αν τα σώματα Σ1 και Σ2 αμέσως μετά την κρού-
ση κινούνται προς αντίθετες κατευθύνσεις, 

τότε 


 


1

2

1,  οπότε από την (6) προκύπτει:

m m
2 1

3=   ή  m1 = 2 kg.
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δ.	 Έχουμε: �
����

� �
� �

��
�

2

1

100%

ή  



 


1

2

1

2

100
2 2

2

1 1

2

m

m

%

  

ή, λόγω της (5):

� �
�� �

�
4

100
1 2

1 2

2

m m

m m

%   ή  π = 75%.

ε.	 Έχουμε: dp

dt
F

x
 

  
ή  dp

dt
T=

1

  

ή  dp

dt
m g� �

1 1

  
ή  dp
dt

= 8 kg m/s2 .

180.	 α.	 Εφαρμόζουμε το Θ.Μ.Κ.Ε. για την 
κίνηση του σώματος Σ1 πριν από την κρούση 
από τη θέση Α στη θέση Γ, όπως φαίνεται στο 
παρακάτω σχήμα. Είναι:

w1

T1
N1

ΓΑ

υ1υ0 υ2 = 0

s1

Σ1Σ1 Σ2

ΠΡΙΝ

� �
1 1 1 1 1��� ���� � � �� � � �W W W

T w N

ή  1

2

1

2
0 0

1 1

2

1 0

2

1 1 1
m m m gs        

ή  υ1 10= m/s.

β.	 Για την ελαστική κρούση των δύο σωμά-

των έχουμε:   


 
1

1 2

1 2

1

m m

m m
  ή    

1
6 m/s   

και  


 
2

1

1 2

1

2m

m m
  ή    

2
16 m/s.

γ.	 Έστω ′s
1

 το διάστημα που διανύει το σώμα 
Σ1 από τη χρονική στιγμή t

1
 αμέσως μετά 

την κρούση μέχρι τη χρονική στιγμή ′t
1

 στην 
οποία ακινητοποιείται στη θέση Δ.

Γ Δ
w

1

T
1

N
1

t
1 

t
1 

Σ
1

Σ
1

ʹυ
1

s
1

ΓΑ

υ
1

υ
0

t
 
=

 
0

Σ
1

Σ
1

Σ
2

t
1 

ʹ

ΠΡΙΝ

ΜΕΤΑ

υ
2 = 0

υ= 0

s
1

ʹ

Από το Θ.Μ.Κ.Ε. για την κίνηση του σώματος 
Σ1 από τη θέση Γ στη θέση Δ μετά την κρούση 
έχουμε: � �� �1 1 1 1 1� � � �� � � �W W W

T w N

ή  0
1

2
0 0

1 1

2

1 1 1
     m m gs 

ή   


s
g

1

1

2

1
2


   

ή   s
1

3 6, m.

Άρα η απόσταση ��� �  είναι:     s s
1 1

  
ή  (ΑΔ) = 8 m.

δ.	 Έστω α1  το μέτρο της επιβράδυνσης του 
σώματος Σ1 πριν και μετά την κρούση. Έχου-
με: F m

x


1 1
  ή  T m

1 1 1
� �   ή   

1 1 1 1
m g m

ή  � �
1 1
� g   ή  �

1
5� m/s

2
.

Η χρονική στιγμή t
1

 στην οποία το σώμα Σ1 
συγκρούεται με το σώμα Σ2 υπολογίζεται από 
την εξίσωση της ταχύτητας:    

1 0 1 1
  t   

ή  t
1

0 1

1


 

   
ή  t

1
0 4= , s.

Η χρονική στιγμή ′t
1

 στην οποία το σώμα Σ1 
ακινητοποιείται μετά την κρούση υπολογίζε-
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ται από την εξίσωση:       
1 1 1 1

t t

ή  0
1 1 1 1

      t t  ή    


t t
1 1

1

1





ή    


t t
1 1

1

1



  
ή   t1 1 6, s.

ε.	 Έστω α2  το μέτρο της επιβράδυνσης του 
σώματος Σ2 μετά την κρούση και μ2 ο συντε-
λεστής τριβής ολίσθησης που εμφανίζει με το 
οριζόντιο δάπεδο.

w2

T2
N2

s2

ʹυ2

Σ2Σ2

t2 t1 

ΜΕΤΑ

υ= 0

Έχουμε: F m
x


2 2
   ή  T m

2 2 2
� �

ή  � �
2 2 2 2
m g m�   ή  � �

2 2
� g

ή  � �
2

2�
g

  (1).

Επειδή το σώμα Σ2 μετά την κρούση εκτελεί 
ομαλά επιβραδυνόμενη κίνηση, η χρονική εξί-
σωση του μέτρου υ  της ταχύτητάς του μέχρι 
να ακινητοποιηθεί δίνεται από την εξίσωση:

     
2 2 1

t t   (2).

Αν στη (2) θέσουμε   0  και t t=
2
,  έχουμε:

0
2 2 2 1

     t t  ή  


2

2

2 1





t t

ή  α2 = 4 m/s2.

Από την (1) βρίσκουμε τελικά μ2 = 0,4.

181.	 α.	 Έστω  1  και  2  οι ταχύτητες των 
σωμάτων Σ1 και Σ2 αντίστοιχα μετά την κρού-
ση.

ΓΖ w1

T1

N1

w2

T2

N2

s1 s2

ʹυ2
ʹυ1

Σ2Σ1 Σ1 Σ2

Δ

ΓΑ
d

Σ2Σ1 Σ1

υ1υ0

υ= 0υ= 0

υ2 = 0

Από την εφαρμογή του θεωρήματος μεταβο-
λής της κινητικής ενέργειας για την κίνηση 
του σώματος Σ1 από τη θέση Γ στη θέση Ζ 
μετά την κρούση έχουμε: 
� �� �1 1 1 1 1� � � �� � � �W W W

T w N

ή  0
1

2
0 0

1 1

2

1 1
    m m gs 

ή  ′ =υ1 2 m/s .

β.	 Από την εφαρμογή του Θ.Μ.Κ.Ε. για την 
κίνηση του σώματος Σ2 από τη θέση Γ στη 
θέση Δ μετά την κρούση έχουμε: 
� �� �2 2 2 2 2� � � �� � � �W W W

T w N

ή  0
1

2
0 0

2 2

2

2 2
    m m gs 

ή  ′ =υ2 4 m/s .

γ.	 Για τις αλγεβρικές τιμές των ταχυτήτων ��1  
και ��2  των σωμάτων Σ1 και Σ2 αντίστοιχα αμέ-
σως μετά την κρούση ισχύει: 

  


 
1

1 2

1 2

1

m m

m m
  (1),

 


 
2

1

1 2

1

2m

m m
  (2).
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Με διαίρεση κατά μέλη των (1) και (2) έχουμε:



 


1

2

1 2

1
2

m m

m   
ή    





1

2

1 2

1
2

m m

m   

ή  � �
�1

2 2

1 2

1

m m

m   
ή  m
m
1

2

1
2

=   (3).

δ.	 Αντικαθιστώντας τη σχέση (3) στη (2) προ-
κύπτει: 1

6 m/s.

Από την εφαρμογή του Θ.Μ.Κ.Ε. για την κί-
νηση του σώματος Σ1 από τη θέση Α στη θέση  
Γ πριν από την κρούση έχουμε: 

� �� �1 1 1 1 1� � � �� � � �W W W
T w N   

ή  1

2

1

2
0 0

1 1

2

1 0

2

1
m m m gd      

 

ή    
0 1

2
2  gd   ή  υ0 = 10 m/s.

ε.	 Έχουμε: 



 


1

2

1

2

100
2 2

2

1 0

2

m

m

%   ή  π = 32%.

182.	 α.	 Για να υπολογίσουμε το μέτρο υ1 
της ταχύτητας του σώματος Σ1 ακριβώς πριν 
από την κρούση, εφαρμόζουμε την Α.Δ.Μ.Ε. 
μεταξύ των θέσεων Α και Γ της κίνησής του, 
όπως φαίνεται στο παρακάτω σχήμα. 

Α

υ1

Ο

Σ2

Σ1

Γ





w1

T1

ΠΡΙΝ

υ2 = 0

υ0 = 0

� �� ���� ���� � � ��
  
ή  0

1

2
0

1 1 1

2  m g m 

ή  
1

2 g   ή  
1

5 m s/ .

Η συνισταμένη των δυνάμεων που ασκούνται 
στο σώμα Σ1 ακριβώς πριν από την κρούση δρα 
ως κεντρομόλος δύναμη. Επομένως: �F F� �

ή  
1 1

1 1

2

 m g
m 
   

ή  
1 1

1 1

2

 m g
m 


ή  T N1 30= .

β.	 Έστω h το μέγιστο ύψος στο οποίο φτάνει 
η σφαίρα Σ1 μετά την κρούση. Ισχύει: 

���� �
x
   

ή  ���� � �


h
 
ή  h � �� � 1 ����

ή  h = 0 45, m.

Από την Α.Δ.Μ.Ε. για τις θέσεις Γ και Δ της 
κίνησης του σώματος Σ1 μετά την κρούση 
έχουμε: � �� ���� ���� � � ��

ή  1

2
0 0

1 1

2

1
m m gh   

  
ή  ′ =υ1 3 m/s .

φ

Σ2 Σ2

Ο

s

w2

T2

N2
ʹυ1

ʹυ2

x

h
Δ



Γ Ζ


Σ1

βαρU 0=

ΜΕΤΑ

Σ1

υ= 0

υ= 0

γ.	 Έχουμε:   


 
1

1 2

1 2

m m

m m
1

ή    


 
1

1 2

1 2

m m

m m
1

  
ή  m2 4= kg .

δ.	 Έχουμε:  


 
2

1

1 2

2m

m m
1
  ή   

2
2 m/s.
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Εφαρμόζουμε το Θ.Μ.Κ.Ε. για την κίνηση του 
σώματος Σ2 μετά την κρούση από τη θέση Γ 
στη θέση Ζ, όπως φαίνεται στο προηγούμενο 
σχήμα. 

� �� �2 2 2 2 2� � � �� � � �W W W
T w N

ή  0
1

2
0 0

2 2

2

2

   m W
T


  
ή  W

T
2

8� � J.

Άρα: Q W
T T

2 2

=   ή  QT2
= 8 J.

ε.	 Έστω α2 το μέτρο της επιβράδυνσης με την 
οποία κινείται το σώμα Σ2 μετά την κρούση. 

Έχουμε: F m
x


2 2
   ή  T m

2 2 2
� �

ή  � �m g m
2 2 2
�   ή  �

2
1� m/s

2
.

Έστω t
0

0=  η χρονική στιγμή αμέσως μετά 
την κρούση και t  η χρονική στιγμή στην οποία 
ακινητοποιείται το σώμα Σ2 μετά την κρούση. 

Έχουμε: 0
2 2

   t   ή  t 



2

2

  ή  t = 2 s.

Το μέτρο ��  της ταχύτητας του σώματος Σ2  
1 s πριν ακινητοποιηθεί υπολογίζεται από την  
εξίσωση (στο S.I.):       

2 2
1t

ή    1 m s/ .

Ο ρυθμός με τον οποίο εκλύεται θερμότητα 
λόγω της τριβής ολίσθησης που ασκείται στο 
σώμα Σ2 από το δάπεδο 1 s πριν ακινητοποιη­

θεί είναι: dQ

dt
 T

2


  
ή  dQ

dt
m g  

2

ή  dQ
dt

/= 4 J s.

183.	 α.	 Για να υπολογίσουμε το μέτρο 2  
της ταχύτητας του σώματος Σ2 αμέσως μετά 
την κρούση, εφαρμόζουμε το Θ.Μ.Κ.Ε. για 
την κίνησή του μετά την κρούση από τη θέση 
Γ στη θέση Δ, όπως φαίνεται στο επόμενο  
σχήμα.

Ο

Σ
2

Σ
2

Σ
2

Σ
1

Δ Ζw
2

T
2

N
2

s

s
2

υ

Γ

ʹυ
2

ʹυ
1

ΜΕΤΑ



υ= 0

  2 2 2 2 2      W W W
T w N

ή  1

2

1

2
0 0

2

2

2 2

2

2
m m m gs      

ή  ′ =υ2 3 m/s.

β.	 Έχουμε:  


 
2

1

1 2

2m

m m
1
  ή  

1
6 m/s.

Σ
1

Ο

h

Γ

υ
1

Α

Σ
2

βαρ
U 0=

ΠΡΙΝ

Σ
1

υ
2 = 0

υ= 0





Από την Α.Δ.Μ.Ε. μεταξύ των θέσεων Α και 
Γ της κίνησης του σώματος Σ1 πριν από την 
κρούση έχουμε: E E��� ���� �� � � ��

ή  m gh m
1 1 1

21

2
 

  
ή  h = 1 8, m.

γ.	 Έστω  1  η ταχύτητα του σώματος Σ1 αμέ-
σως μετά την κρούση. Έχουμε:

  


 
1

1 2

1 2

1

m m

m m
  ή    

1
3 m s.
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Επομένως: dp

dt
F





� �
  
ή  dp

dt
F



� �

ή  dp

dt

m
�

�



1 1

2

  
ή  dp
dt



= 4 5, kgm/s2.

δ.	 Από το Θ.Μ.Κ.Ε για τις θέσεις Γ και Ζ 
της κίνησης του σώματος Σ2 μετά την κρούση 
έχουμε: � �� �2 2 2 2 2� � � �� � � �W W W

T w N

ή  0
1

2
0 0

2 2

2

2 2
    m m gs 

ή  s2 12= 1 5 m, .

ε.	 Το ζητούμενο ποσοστό υπολογίζεται από 

τον τύπο: � � �
�

W

m gh

�
� �

2

1

100%

ή  � �
� �

m gs

m gh

2 2

1

100%

  
ή  π = 75%.

184.	 α.	 Έστω υ το μέτρο της ταχύτητας του 
σώματος Σ2 στο ανώτερο σημείο Γ της κυκλι-
κής τροχιάς που διαγράφει μετά την κρούση. 
Οι δυνάμεις που ασκούνται στο σώμα Σ2 στο 
σημείο αυτό είναι: το βάρος του w

2
 και η 

τάση του νήματος 


T.  Η συνισταμένη των δυ-
νάμεων που ασκούνται στο σώμα Σ2 στη θέση 
Γ δρα ως κεντρομόλος δύναμη. 

Επομένως, ισχύει: �F F� �  ή  T m g
m 

2

2

2
  

ή  T
m

m g 2

2

2




 (1).

Για να εκτελέσει το σώμα Σ2 ανακύκλωση, πρέ-
πει να φτάσει στη θέση Γ με το νήμα τεντωμέ-
νο. Συνεπώς, πρέπει να ισχύει: � � 0   ή λόγω 

της (1): m
m g

2

2

2
0




 
  
ή  m

m g
2

2

2






ή    g  (2).

Από τη (2) προκύπτει ότι το μέτρο της ταχύτη-
τας του σώματος Σ2 στη θέση Γ στην περίπτω-
ση που μόλις εκτελεί ανακύκλωση είναι: 

  g  (3).

υ0

Σ2

Α

Ο

Δ

Σ1

υ1

Σ1

s

w1

T1

N1

ΠΡΙΝ



Δ

Σ1

s

Α

Γ

Ο

ʹυ2
ʹυ1

υ

υ

Ζ

w2

βαρU 0=

ʹ
T ʹ

ΜΕΤΑ

T

w2







w1

N1

T1́

Σ1
Σ2

Για να υπολογίσουμε το μέτρο ��2  της ταχύ-
τητας του σώματος Σ2 αμέσως μετά την κρού-
ση, εφαρμόζουμε την Α.Δ.Μ.Ε. για τις θέσεις 
Α και Γ της κυκλικής τροχιάς που διαγράφει 
το σώμα Σ2 μετά την κρούση, θεωρώντας ως 
επίπεδο μηδενικής βαρυτικής δυναμικής ενέρ-
γειας το οριζόντιο επίπεδο που διέρχεται από 
τη θέση Α. Είναι:
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� �� ���� ���� � � ��
 
ή  � �� � � �2 2 2 2� � � � � � � �� � �U U

ή  1

2
0

1

2
2

2 2

2

2

2

2
m m m g     

  
ή λόγω της 

(3): 1

2

1

2
2

2

2   g g 

  
ή   

2
5g

ή  ′ =υ2 6 m/s.

β.	 Έστω α1 το μέτρο της επιβράδυνσης του Σ1 
μετά την κρούση. Έχουμε: F m

x


1 1


ή  T m
1 1 1
� �   ή  � �m g m

1 1 1
�   ή  � �

1
� g

ή  �
1

1� m/s
2
.

Για την κίνηση του σώματος Σ1 στο χρονικό 
διάστημα Δt από τη χρονική στιγμή αμέσως 
μετά την κρούση μέχρι τη χρονική στιγμή 
στην οποία διέρχεται από την αρχική του θέση 

Δ ισχύει: s t t    
1 1

21

2
 

ή   
  




1

1

21

2
s t

t



   
ή  ′ =υ1 6 m/s.

γ.	 Για τις αλγεβρικές τιμές 1  και 2  των 
ταχυτήτων των σωμάτων Σ1 και Σ2 αντίστοιχα 
αμέσως μετά την κρούση ισχύει:

  


 
1

1 2

1 2

m m

m m
1
  (1)

 


 
2

1

1 2

1

2m

m m
  (2).

Με διαίρεση κατά μέλη των (1) και (2) προκύ-

πτει: 


 


1

2

1 2

1
2

m m

m   
ή  � �

�
1

2

1 2

1

m m

m

ή  m
m
1

2

1
3

=  (3).

δ.	 Για να υπολογίσουμε το μέτρο    της τα-
χύτητας του σώματος Σ2 τη χρονική στιγμή 
στην οποία το νήμα γίνεται για πρώτη φορά 
οριζόντιο μετά την κρούση, εφαρμόζουμε την 
Α.Δ.Μ.Ε για την κίνησή του από τη θέση Α 
στη θέση Ζ (βλ. προηγούμενο σχήμα): 
E E��� ���� �� � � ��

ή  1

2

1

2
2 2

2

2 2

2
m m g m   

ή    21 6, m/s.

Έστω ��  το μέτρο της τάσης του νήματος  
που ασκείται στο σώμα Σ2 τη χρονική στιγμή 
στην οποία διέρχεται από τη θέση Ζ όπου το 
νήμα γίνεται για πρώτη φορά οριζόντιο μετά 

την κρούση. Έχουμε: � �� F�   ή   


 m
2

2


ή   T 90 N.

ε.	 Από τη σχέση (2), λόγω της σχέσης (3) 
προκύπτει: υ1 = 12 m/s. Από το Θ.Μ.Κ.Ε. για 
την κίνηση του σώματος Σ1 από τη θέση Δ  
στη θέση Α πριν από την κρούση έχουμε:
  1 1 1 1 1A T w N

W W W      

ή  
1

2

1

2
0 0

1 1

2

1 0

2

1
m m m gs      

ή  
0

180 m s/ .

Είναι: 



 


1

2

1

2

100
1 1

2

1 0

2

m

m

%   ή  π = 20%.

185.	 α.	 Έστω 1  και 2  οι αλγεβρικές 
τιμές των ταχυτήτων των σωμάτων Σ1 και Σ2 
αντίστοιχα αμέσως μετά την κρούση.
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(+)

Α

Γ

Ο

Σ2

υ2 υ1

Ο

Σ2

Σ1

ʹυ1ʹυ2

Σ1

w1

T1

βαρU 0=

ΠΡΙΝ ΜΕΤΑ






Σ1

υ0 = 0

Επειδή τα σώματα Σ1 και Σ2 έχουν ίσες μάζες 
και η κρούση είναι κεντρική και ελαστική, 
κατά τη διάρκεια της κρούσης ανταλλάσσουν 
ταχύτητες. Επομένως:   

1 2
  ή    

11
5 m/s

ή  ′ =υ1 5 m/s .

β.	 Για το σώμα Σ1 αμέσως μετά την κρούση 

έχουμε: �F F��� ��   ή  T w
m

1 1

1 1

2

 



ή  6
1 1

1 1

2

w w
m 


   

ή  5
1

1 1

2

m g
m




ή   

1

2

5g
  ή   = 0,5 m.

γ.	 Από την Α.Δ.Μ.Ε. για τις θέσεις Α και Γ 
της κυκλικής κίνησης του σώματος Σ1 πριν 

από την κρούση έχουμε: E E��� ���� �� � � ��

ή  m g m
1 1 1

21

2
  

  
ή  

1
10 m/s.

Επειδή τα σώματα ανταλλάσσουν ταχύτητες, 

έχουμε:   
2 1   ή    

2
10 m/s

ή  ′ =υ2 10 m /s.

δ.	 Για να εκτελέσει το σώμα Σ1 ανακύκλωση 
μετά την κρούση, πρέπει να φτάσει στο ανώτε-
ρο σημείο Δ της κυκλικής τροχιάς που διαγρά-
φει μετά την κρούση με το νήμα τεντωμένο.

Σ
1

Γ

Δ

Ο

ʹυ
1

υ

Ζ

w
1

w
1

T

T
2

υ
Ζ

βαρ
U 0=

ΜΕΤΑ







Συνεπώς, στο σημείο Δ πρέπει να ισχύει T ≥ 0. 
Έστω ότι το σώμα Σ1 φτάνει στο σημείο Δ με 
ταχύτητα μέτρου υ. 
Για να υπολογίσουμε το μέτρο της ταχύτητας 
υ, εφαρμόζουμε την Α.Δ.Μ.Ε. για τις θέσεις Γ 
και Δ της κυκλικής τροχιάς που διαγράφει το 
σώμα Σ1 μετά την κρούση:
E E��� ���� �� � � ��

  
ή  K U K U� � � �� � �

ή  1

2
0

1

2
2

1 1

2

1

2

1
m m m g     

ή    5 m/s.

Η συνισταμένη των δυνάμεων που ασκούνται 
στο σώμα Σ1 στη θέση Δ δρα ως κεντρομόλος  

δύναμη. Επομένως: �F F� �   ή  T m g
m 

1

2

1



ή  T
m

m g 1
2

1
   

ή  T = 0.

Άρα το σώμα Σ1 μετά την κρούση εκτελεί 
οριακά ανακύκλωση.

ε.	 Για να υπολογίσουμε το μέτρο υΖ της τα-
χύτητας του σώματος Σ1 τη χρονική στιγμή 
μετά την κρούση στην οποία το νήμα γίνεται 
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για πρώτη φορά οριζόντιο, εφαρμόζουμε την 
Α.Δ.Μ.Ε. για την κίνηση του από τη θέση Γ 
στη θέση Ζ, όπως φαίνεται στο προηγούμενο 
σχήμα. 
� �� ���� ���� � � ��

  
ή  K U K U� � � �� � �

ή  1

2
0

1

2
1 1

2

1 1

2
m m g m     

ή    15 m/s.

Επομένως, ο ρυθμός μεταβολής της κινητικής 
ενέργειας του σώματος Σ1 στη θέση Ζ είναι:
dK

dt
m g 

1
   ή  dK

dt
J s 30 15 / .

186.	 α.	 Έστω 1  και 2  τα μέτρα των τα-
χυτήτων των σωμάτων Σ1 και Σ2 αντίστοιχα 
αμέσως μετά την κρούση. 

Ο

Α

Γ

υ

T

w2

Σ2

υ1

Ο

Σ1 Σ1

ʹυ1
ʹυ2

Σ2

ΠΡΙΝ ΜΕΤΑ







Έστω υ το μέτρο της ταχύτητας του σώματος 
Σ2 τη χρονική στιγμή στην οποία διέρχεται 
από τη θέση Γ όπου το νήμα γίνεται για πρώτη 
φορά οριζόντιο μετά την κρούση.

Στη θέση Γ ισχύει: T F� �   ή  T
m 2

2


ή    3 m/s.

Από την Α.Δ.Μ.Ε μεταξύ των θέσεων Α και 
Γ για την κίνηση του σώματος Σ2 μετά την 
κρούση, όπως φαίνεται στο παραπάνω σχήμα 
έχουμε: E E��� ���� �� � � ��

ή  1

2

1

2
2 2

2

2 2

2
m m g m   

ή  ′ =υ2 5 m/s .

β.	 Επειδή το σώμα Σ1 μετά την κρούση σε 
ίσους χρόνους διανύει ίσα διαστήματα στο 
οριζόντιο δάπεδο, η κίνηση που εκτελεί είναι 
ευθύγραμμη ομαλή. 

Συνεπώς, για το μέτρο 1  της ταχύτητάς του 

αμέσως μετά την κρούση ισχύει:  
1

s

t
ή  ′ =υ1 10 m/s .

γ.	 Για τις αλγεβρικές τιμές 1  και 2  των 
ταχυτήτων των σωμάτων Σ1 και Σ2 αντίστοιχα 
αμέσως μετά την κρούση δίνονται από τους 

τύπους:   


 
1

1 2

1 2

m m

m m
1
  (1),

 


 
2

1

1 2

2m

m m
1
  (2).

Με διαίρεση κατά μέλη των (1) και (2) έχουμε:


 


1

2

1 2

1
2

m m

m   
ή    

2
2

1 2

1

m m

m
   ή  m m

1

2

5
=

ή  m1 0 4= , kg .

δ.	 Από τη σχέση (2) βρίσκουμε: 
1

m/s. 15

Έχουμε: �  

p p p
1 1 1
� �� � � ���� ���

ή  p m m
1 1 1 1 1
     ή  �p

1
10� � kg m/s

οπότε: Δp1 10= kg m/s .

187.	 α.	 Από την Α.Δ.Μ.Ε για την κίνηση 
της σφαίρας Σ1 πριν από την κρούση έχουμε:

Εμηχ(αρχ) = Εμηχ(τελ)  ή  m gh m
1 1 1 1

21

2
 

ή  
1 1

2 gh   ή  =υ1 3 m/s .

β.	 Επειδή η σφαίρα Σ2 μόλις που εκτελεί ανα-
κύκλωση μετά την κρούση (βλ. λυμένη άσκη-
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ση 5α), έχουμε:  
2 2

5g   ή  ′ =υ2 5 m/s.

γ.	 Αν θεωρήσουμε θετική τη φορά της ταχύ-
τητας υ

1
,  τότε από την εξίσωση που δίνει την 

αλγεβρική τιμή της ταχύτητας του σώματος Σ2 
αμέσως μετά την κρούση έχουμε:

 


 


  
2

1

1 2

1

2 1

1 2

2

2m

m m

m m

m m

ή      5
4

3
3

1

3
2

m/s m/s 
 
ή 

2
3  m/s.

Από την Α.Δ.Μ.Ε. για την κίνηση της σφαίρας 
Σ2 πριν από την κρούση έχουμε: 

E E��� ��� ��� ���� � � ��
  
ή  m gh m

2 2 2 2

21

2
 

ή  h2 0 45= , m .

δ.	 Για την αλγεβρική τιμή της ταχύτητας της 
σφαίρας Σ1 αμέσως μετά την κρούση υπολογί-
ζεται από τον τύπο:

 


 


  
1

2

1 2

2

1 2

1 2

1

2m

m m

m m

m m   
ή    

1
1 m/s.

Συνεπώς, έχουμε: �  

p p p
1 1 1
� �� � � ���� ���

ή  p m m
1 1 1 1 1
     ή  �p

1
8� � kg m/s

οπότε: Δp1 8= kg m/s.

ε.	 Έστω υ το μέτρο της ταχύτητας του σώ-
ματος Σ2 τη χρονική στιγμή, μετά την κρούση, 
στην οποία διέρχεται για πρώτη φορά από τη 
θέση Γ όπου το μέτρο της δύναμης που ασκεί-
ται στο Σ2 από το νήμα είναι T � 45 �.

φ

Ο2

Α

Γ

h

x T

w2x

υ

w2yφ

w2

2

ʹυ
2Σ2

βαρU 0=

2

Για τη συνισταμένη των δυνάμεων που ασκού-
νται στο σώμα Σ2 στην ακτινική διεύθυνση, 
όταν διέρχεται από το σημείο Γ ισχύει:

�F F��� ��   ή  T w
m

y
 

2

2

2

2




ή T m g
m 

2

2

2

2





  (1).

Από την Α.Δ.Μ.Ε. για την κίνηση του σώμα-
τος Σ2 από τη θέση Α στη θέση Γ έχουμε:
� �� ���� ���� � � ��   

ή  1

2

1

2
2 2

2

2

2

2
m m m gh   

ή  � �2

2

2
2� �� gh   (2).

Από το σχήμα έχουμε: ���� � x



2

ή    


2
h

  
ή  h   

2
1   (3).

Με αντικατάσταση της (3) στη (2) προκύπτει: 

  2

2

2

2
2 1    g  (4).

Με αντικατάσταση της (4) στη σχέση (1) 
έχουμε:

T m g
m

g     
2

2

2

2

2

2
2 1  





ή  T m g
m  

2

2

2

2

2 


  2 1
2

m g  .

Με αντικατάσταση των τιμών των μεγεθών 

βρίσκουμε:   1

2
  ή  φ = 60°.

188.	 α.	 Από την Α.Δ.Μ.Ε. για τις θέσεις 
Α και Β της κυκλικής τροχιάς που διαγράφει 
το σώμα Σ1 πριν από την κρούση, θεωρώντας  
ως επίπεδο μηδενικής βαρυτικής δυναμικής 
ενέργειας το οριζόντιο επίπεδο που διέρχε-
ται από το κατώτερο σημείο Β του κυκλικού  
οδηγού, έχουμε:
� �� ���� ���� � � ��

  
ή  � �� � � �� � �U U
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ή  1

2

1

2
0

1 0

2

1 1 1

2
m m gR m   

ή   
1 0

2
2  gR   ή  υ1 = 7 m/s.

β.	 Έστω  1  η ταχύτητα του σώματος Σ1 αμέ-
σως μετά την κρούση και υ  η ταχύτητά του, 
όταν διέρχεται από το ανώτερο σημείο Δ του 
κυκλικού οδηγού.

Ο

Σ1 Σ2

Δ

ʹυ1
ʹυ2

N

w1

υ

B

R

βαρU 0=

Οι δυνάμεις που ασκούνται στο σώμα Σ1 στο 
σημείο Δ της τροχιάς του είναι: το βάρος του 


w
1
 και η ακτινική δύναμη 



Ν  από τον κυκλικό 
οδηγό. Η συνισταμένη αυτών των δυνάμεων 
δρα ως κεντρομόλος δύναμη στο σημείο Δ. 

Επομένως: �F F��� ��   ή    w
m

R
1

1

2

ή    m

R
m g

1

2

1

   (1).

Επειδή το σώμα Σ1 μόλις που εκτελεί ανακύ-
κλωση στη θέση Δ, ισχύει: � � 0.

Επομένως, από την (1) έχουμε: m
R

m g
1

2

1
0

  

ή    gR   ή    20 m/s.

Από την Α.Δ.Μ.Ε. για τις θέσεις Β και Δ έχου-
με:          ή        U U

ή  1

2
0

1

2
2

1 1

2

1

2

1
m m m g R    

ή     
1

2
4gR   ή  ′ =υ1 10 m/s.

γ.	 Επειδή η κρούση είναι κεντρική και ελα-
στική και τα σώματα έχουν ίσες μάζες, ανταλ-
λάσσουν ταχύτητες κατά τη διάρκεια της 
κρούσης. Συνεπώς, ισχύουν:   

2 1

ή   
2

7 m/s   και   
1 2

  ή  
2

10 m/s.

Το ζητούμενο ποσοστό προκύπτει:

�
����

� �
� �

��
�

2

2

100%

ή 
 




 


1

2

1

2

1

2

100
2 2

2

2 2

2

2 2

2

m m

m

%  ή  π = – 51%.

h
Ο

Σ1

Γ

ʹυ1

Β

R

w1x
w1y

w1 φ

υΓ

Ζ

βαρU 0=

Nʹ
φ

δ.	 Οι δυνάμεις που ασκούνται στο σώμα Σ1 
στη θέση Γ είναι: το βάρος του w

1
 και η ακτι-

νική δύναμη 


��  από τον κυκλικό οδηγό.
Έστω υΓ το μέτρο της ταχύτητας του σώμα-
τος Σ1 στο σημείο Γ. Από την Α.Δ.Μ.Ε. μεταξύ 
των θέσεων Β και Γ έχουμε:
      

   
ή        U U   

ή  1

2
0

1

2
1 1

2

1

2

1
m m m gh    

ή     
1

2
2gh   ή    40 m/s.
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Από το ορθογώνιο τρίγωνο ΟΓΖ έχουμε:

��� �
� �
� �
��
��   

ή  ��� � �h R

R   
ή  ��� � 1

2
.

Η συνισταμένη των δυνάμεων που ασκούνται 
στο σώμα Σ1 στο σημείο Γ, κατά τη διεύθυν-
ση της ακτίνας, δρα ως κεντρομόλος δύναμη. 

Επομένως: �F F��� ��   ή     
w

m

R
y1

1

2

ή     m

R
m g

1

2

1




  
ή   N N30 .

189.	 α.	 Εφαρμόζουμε την Α.Δ.Μ.Ε. για 
την κίνηση του σώματος Σ1 από τη θέση Α στη 
θέση Γ πριν από την κρούση, θεωρώντας ως 
επίπεδο μηδενικής βαρυτικής δυναμικής ενέρ-
γειας το οριζόντιο επίπεδο που ταυτίζεται με 
τη βάση του κεκλιμένου επιπέδου. Είναι:

� �� ���� ���� � � ��
  
ή  m gh m m gh

1 1 1 1

2

1 2

1

2
 

ή  
1 1 2

2  g h h
  
ή  =υ1 4 m/s.

φ

Σ1

Σ2 Γ

Αυ1
Σ1υ2

h1
h2 βαρU 0

β.	 Για την ελαστική κρούση των Σ1 και Σ2:

 


 


  
1

2

1 2

2

1 2

1 2

1

2m

m m

m m

m m

ή  ′ = −υ1 8 m/s  και 

 


 


  
2

1

1 2

1

2 1

1 2

2

2m

m m

m m

m m
   ή  ′ =υ2 0 .

γ.	 Το ζητούμενο ποσοστό είναι:


   

 




   

 

E E

E

 



2 2

2

100%
΄

όπου E m m gh     
2

1

2
2 2

2

2 2΄   και

E m m gh     
2

1

2
2 2

2

2 2
.

Επομένως, προκύπτει: π = 80%.

δ.	 Έστω υ  η ταχύτητα με την οποία το 
σώμα Σ2 φτάνει στο σημείο Δ που βρίσκε-
ται στη βάση του κεκλιμένου επιπέδου. Από 
την Α.Δ.Μ.Ε για την κίνηση του σώματος Σ2 
από τη θέση Γ στη θέση Δ μετά την κρούση  
έχουμε: E E��� ���� �� � � ��

ή  1

2

1

2
2 2

2

2 2 2

2
m m gh m   

ή  | υ | = 2 m/s.

ε.	 Έστω α2 το μέτρο της επιτάχυνσης με την 
οποία κινείται το σώμα Σ2 στο κεκλιμένο επί-
πεδο μετά την κρούση. 
Έχουμε: �F m

x
�

2 2
�   ή  m g m

2 2 2
��� ��

ή  � ���
2
� g   ή  �

2
5� m/s

2
.

Η χρονική στιγμή t
1

 στην οποία το σώμα Σ2 
φτάνει στη βάση του κεκλιμένου επιπέδου 
υπολογίζεται από την εξίσωση:    

2 2 1
t

ή  t
1

2

2


  

   
ή  t

1
0 4= , s.

Το διάστημα s2 που διανύει το σώμα Σ2 από  
τη χρονική στιγμή t = 0  μέχρι τη χρονική 

στιγμή t1 είναι: s t
2 2 1

21

2
� �   ή  s

2
0 4= , m.

Το σώμα Σ1 αμέσως μετά την κρούση αρχίζει 
να κινείται προς την κορυφή του κεκλιμένου 
επιπέδου επιβραδυνόμενο.
Έστω α1 το μέτρο της επιβράδυνσης με την 
οποία κινείται το σώμα Σ1 μετά την κρούση 
στο κεκλιμένο επίπεδο μέχρι να ακινητοποιη-
θεί στιγμιαία.
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Έχουμε: �F m
x
�

1 1
�   ή  m g m

1 1 1
��� ��

ή  � ���
1
� g   ή  �

1
5� m/s

2
.

Έστω t2 η χρονική στιγμή στην οποία ακι-
νητοποιείται στιγμιαία το σώμα Σ1 μετά την  
κρούση. Ισχύει:    

1 1 2
t

ή  0
1 1 2

   t   ή  t
2

1

1




   
ή  t

2
1 6= , s.

Συνεπώς, τη χρονική στιγμή t
1

0 4= , s  στην 
οποία το σώμα Σ2 φτάνει στη βάση του κεκλι-
μένου επιπέδου, το σώμα Σ1 δεν έχει ακόμη 
ακινητοποιηθεί στιγμιαία. 
Το διάστημα s1 που διανύει το Σ1 από τη χρο-
νική στιγμή t = 0  μέχρι τη χρονική στιγμή t1 
υπολογίζεται από την εξίσωση: 

s t t
1 1 1 1 1

21

2
     ή  s

1
2 8= , m.

Η απόσταση μεταξύ των δύο σωμάτων τη χρο-
νική στιγμή t1 είναι: d s s� �

1 2
  ή  d = 3,2 m.

190.	 α.	 Έστω υ1 το μέτρο της ταχύτητας 
του σώματος Σ1 ακριβώς πριν από την κρούση 
με το σώμα Σ2.
Από το Θ.Μ.Κ.Ε. για την κίνηση του σώματος 
Σ1 στο οριζόντιο δάπεδο πριν από την κρούση 
έχουμε:      W W W

T w N
1 1 1

ή  1

2

1

2
0 0

1 1

2

1

2

1
m m m gd      

ή    
1

2
2  gd   ή  

1
2 m/s.

Έστω 1  και 2  οι αλγεβρικές τιμές των τα-
χυτήτων των σωμάτων Σ1 και Σ2 αντίστοιχα 
αμέσως μετά την κρούση. 

Έχουμε:   


 
1

1 2

1 2

1

m m

m m
  ή  ′ =υ1 0

και   


 
2

1

1 2

1

2m

m m
  ή  ′ =υ2 2 m/s.

β.	 Έστω ∆
max

 η μέγιστη συσπείρωση του 
ελατηρίου.  
Από το Θ.Μ.Κ.Ε. για την κίνηση του σώμα-
τος Σ2 από τη χρονική στιγμή αμέσως μετά την 
κρούση μέχρι τη χρονική στιγμή στην οποία το 
σώμα Σ2 ακινητοποιείται στιγμιαία για πρώτη 
φορά μετά την κρούση έχουμε:

   
    W W W W

F T w N
2 2 2   

ή

0
1

2
0 0

2 22

2         m U U T
max

     

ή       
1

2

1

2
2

2

22

2
m k m g

max max
   

ή  1

2

1

2
0

2

2 2 2

2
k m g m

max max
       

ή  75 5 2 0
2

k
max max

� � � � � � �  (S.I.).

Οι λύσεις της παραπάνω εξίσωσης είναι: 

�
max

�
2

15
m,  �

max
� �0 2, m.

Δεκτή λύση είναι η Δmax =
2
15
m.

γ.	 Τη χρονική στιγμή στην οποία το σώμα 
Σ2 ακινητοποιείται στιγμιαία για πρώτη φορά 
μετά την κρούση, ασκείται στο σώμα Σ2 η  
δύναμη από το ελατήριο 



F και η δύναμη της 
στατικής τριβής από το δάπεδο. 

Έχουμε: Fελ = kΔ max  ή  Fελ = 20 Ν.

Η οριακή στατική τριβή που ασκείται στο 
σώμα Σ2 είναι: Τστ(ορ) = μsN2  ή  Τστ(ορ) = μsm2g
ή  Τστ(ορ) = 5 N.

Επειδή είναι Fελ > Τστ(ορ), το σώμα Σ2 θα αρχίσει 
να κινείται ξανά.
Έστω ότι το σώμα Σ2 επιστρέφει στο σημείο 
όπου έγινε η κρούση με ταχύτητα μέτρου υ. 
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Από το Θ.Μ.Κ.Ε. για την κίνηση του σώματος 
Σ2 από τη χρονική στιγμή στην οποία ακινητο-
ποιήθηκε στιγμιαία για πρώτη φορά μετά την 
κρούση μέχρι τη χρονική στιγμή στην οποία 
διέρχεται ξανά από το σημείο όπου έγινε η 
κρούση έχουμε:

   
    W W W W

F T w N
2 2 2

  ή

1

2

1

2
0 0 0

2

2 2

2
m k m g

max max
        

ή      k

m
g

max max

2

2

2  

ή  υ = 2 3
3
m/s .

Επειδή το σώμα Σ2 διέρχεται από το σημείο 
όπου έγινε η πρώτη κρούση (στο οποίο βρί-
σκεται ακίνητο το σώμα Σ1) με ταχύτητα μέ-
τρου   0,  θα συμβεί και δεύτερη κρούση 
μεταξύ των σωμάτων. 
Έστω 1  και 2  τα μέτρα των ταχυτήτων 
των σωμάτων Σ1 και Σ2 αντίστοιχα μετά τη 
δεύτερη κρούση τους. Επειδή τα σώματα 
έχουν ίσες μάζες και η δεύτερη κρούση είναι 
επίσης κεντρική και ελαστική, ισχύει: �� �� �1   

ή  m /′′ =υ1
2 3

3
s
  
και  ′′ =υ2 0.

δ.	 Έστω Q
T

 η θερμότητα που εκλύεται εξαι-
τίας της τριβής ολίσθησης που ασκείται στο 
σώμα Σ1 κατά τη διάρκεια της κίνησής του στο 
τεταρτοκύκλιο πριν συγκρουστεί για πρώτη 
φορά με το σώμα Σ2. Από την αρχή διατήρη-
σης της ενέργειας για την κίνηση του σώματος 
Σ1 από τη θέση Α στη θέση Β, θεωρώντας ως 
επίπεδο μηδενικής βαρυτικής δυναμικής ενέρ-
γειας το οριζόντιο επίπεδο που διέρχεται από 
το σημείο Β, έχουμε:

� �� ���� ���� � � �� �Q
T   

ή  Q
T
� �� � � �� �� ���� ���   

ή  Q m m gR m
T
  1

2

1

2
1

2

1 1

2  

ή  QT = 12 J.

191.	 α.	 Από το Θ.Μ.Κ.Ε. για την κίνηση 
του σώματος Σ1 πριν από την κρούση έχουμε:
� ���� ���� � � �W W W

T N w
1 1 1

 

ή  1

2

1

2
0 0

1 1

2

1 0

2

1 1 1
m m m gs      

ή  υ1 = 6 m/s.

β.	 Έστω υ το μέτρο της ταχύτητας του συσ-
σωματώματος αμέσως μετά την κρούση. 
Από την Α.Δ.Ο. για το σύστημα των δύο σω-
μάτων κατά την κρούση έχουμε:
 

p p   ( ) ( )
 ΄  ή  m m m

1 1 1 2
   

ή    4 m/s.

Το ζητούμενο ποσοστό είναι: 


 




  


1

2

1

2

1

2

100
1 1

2

1 2

2

1 0

2

m m m

m

%

ή  π = 12%.

γ.	 Έστω α1 το μέτρο της επιβράδυνσης του 
σώματος Σ1 πριν από την κρούση. Από τον θε-
μελιώδη νόμο της μηχανικής για την κίνηση 
του σώματος Σ1 από τη χρονική στιγμή t = 0  
έως τη χρονική στιγμή t

1
 ακριβώς πριν από 

την κρούση έχουμε: �F m
x
�

1 1
�   ή  �

1 1 1
� m �

ή  � �
1 1 1 1
m g m�   ή  � �

1 1
� g   ή  �

1
2� m/s

2
.

Η χρονική στιγμή t
1

 υπολογίζεται από την 
εξίσωση:   

1 0 1 1
  t   ή  t

1
2= s.

Συνεπώς, το χρονικό διάστημα Δt κίνησης 
του συσσωματώματος από τη χρονική στιγμή 
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t1 αμέσως μετά την κρούση μέχρι τη χρονική 
στιγμή t2 στην οποία ακινητοποιείται είναι: 
�t t t� �

2 1
   ή  �t � 2 s.

Το μέτρο α2 της επιβράδυνσης του συσσωμα-
τώματος κατά την ολίσθησή του στο οριζόντιο 
δάπεδο υπολογίζεται από την εξίσωση:
0

2
   t   ή  �

2
2� m/s

2
.

Αν μ ο συντελεστής τριβής ολίσθησης μεταξύ 
του συσσωματώματος και του οριζόντιου δα-
πέδου, από τον θεμελιώδη νόμο της μηχανικής 
για την κίνηση του συσσωματώματος μετά την 
κρούση έχουμε: 

�F m m
x
� �� �1 2 2

�   ή  � � �� �m m
1 2 2

�

ή  � �m m g m m
1 2 1 2 2
�� � � �� �   ή  � �

� 2

g

ή  μ = 0,2.

δ.	 Έστω s2 το διάστημα που διανύει το συσ-
σωμάτωμα στο οριζόντιο δάπεδο στο χρονικό 
διάστημα �t t t� �

2 1
.  Έχουμε:

s t t
2 2

21

2
        ή  s

2
4= m.

Επομένως: Q

Q

W

W

T

T

1 1





ή  Q

Q

m gs

m m gs

1 1 1 1

1 2 2


 


   

ή  Q
Q

1 8
3Σ

= .

192.	 α.	 Από το Θ.Μ.Κ.Ε. για την κίνηση 
του σώματος Σ1 πριν από την κρούση έχουμε:
� ���� ���� � � �W W W

T N w
1 1 1

ή  1

2

1

2
0 0

1 1

2

1 0

2

1 1 1
m m m gs      

ή  υ1 = 8 m/s.

β.	 Για να υπολογίσουμε το μέτρο υ της ταχύ-
τητας του συσσωματώματος αμέσως μετά την 

κρούση, εφαρμόζουμε το Θ.Μ.Κ.Ε. για την κί-
νηση του συσσωματώματος από τη θέση όπου 
έγινε η κρούση μέχρι τη θέση Α. Έχουμε:

� ���� ���� � � �W W W
T N w

ή  0
1

2
0 0

1 2

2

1
      m m Ts

ή  1

2
1 2

2

2 1 2 1
m m m m gs     

ή  υ = 6 m/s.

γ.	 Από την Α.Δ.Ο. για το σύστημα των δύο 
σωμάτων κατά την κρούση, θεωρώντας θετι-
κή τη φορά της ταχύτητας υ1  του σώματος Σ1 
ακριβώς πριν από την κρούση, έχουμε:
 

p p   ( ) ( )
 ΄

ή  m m m m
1 1 2 2 1 2
         ή  m

m
1

2

1
2

= .

δ.	 Έχουμε: dK

dt
T  

ή  dK

dt
m m g

p

m m
� � �� �

�
�

2 1 2

1 2

ή  dK

dt
gp� ��

2

  
ή  dK
dt

J 18 /s .

193.	 α.	 Το ποσοστό επί τοις εκατό (%) της 
κινητικής ενέργειας του σώματος Σ1 ακριβώς 
πριν από την κρούση που μετατράπηκε σε 
θερμότητα κατά την κρούση προκύπτει από  

τη σχέση: � �� ���� �� ����

�� ����

�
�

�� � � �

� �

� �

�
100%.

΄

Αξιοποιώντας τη μεθοδολογία Γ1 βρίσκουμε: 

� �
�

�
m

m m

2

1 2

100%

  
από την οποία προκύ-

πτει: m1 1= kg.
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β.	 Το συνολικό ποσό θερμότητας που εκλύε-
ται από τη χρονική στιγμή ακριβώς πριν από 
την κρούση μέχρι τη χρονική στιγμή στην 
οποία ακινητοποιείται το συσσωμάτωμα είναι:

Q E E�� ��� ���� �   ή  Q m  1

2
0

1 1

2

ή   
1

1

2 Q

m   
ή  υ1 = 20 m/s.

γ.	 Από την Α.Δ.Ο. για το σύστημα των δύο 
σωμάτων κατά την κρούση έχουμε:
 

p p   ( ) ( )
 ΄   ή  m m m

1 1 1 2
   

ή    4 m/s.

Το συνολικό διάστημα s που διανύει το συσ-
σωμάτωμα μετά την κρούση υπολογίζεται 
εφαρμόζοντας το Θ.Μ.Κ.Ε. για την κίνησή 
του από τη χρονική στιγμή αμέσως μετά την 
κρούση μέχρι τη χρονική στιγμή στην οποία 
ακινητοποιείται.
� ���� ���� � � �W W W

T N w

ή  0
1

2
0 0

1 2

2

1 2
        m m m m gs 

ή  s = 4 m.

δ.	 Το μέτρο α της επιβράδυνσης του συσσω-
ματώματος. Είναι:

�F m m
x
� �� �1 2

�   ή  T m m� �� �1 2
�

ή  � �m m g m m
1 2 1 2
�� � � �� �   ή  � � 2 m/s

2
.

Η χρονική στιγμή t
1

 στην οποία ακινητοποι-
είται το συσσωμάτωμα υπολογίζεται από την 

εξίσωση: 0
1

  t   ή  t
1
 


  ή  t
1

2= s.

Τη χρονική στιγμή t t
2 1

1� � s  το μέτρο ��  
της ταχύτητας του συσσωματώματος υπολογί-
ζεται από την εξίσωση:     t

2

ή    2 m/s.

Ο ζητούμενος ρυθμός προκύπτει: 

dQ

dt
T 

  
ή  dQ

dt
m m g    

1 2

ή  dQ
dt

J= 20 /s .

194.	 α.	 Έστω υ το μέτρο της ταχύτητας 
του κύβου τη χρονική στιγμή στην οποία εξέρ-
χεται το βλήμα από αυτόν. 
Από την Α.Δ.Ο. για το σύστημα βλήμα - κύβος 
κατά την κρούση έχουμε: 

 

p p   ( ) ( )
 ΄

ή  m M m  
1 2
    ή  υ = 10 m/s.

β.	 Έχουμε: ΄E�� �� ���� �� ����� �� � � �� �

ή  E m m     





1

2

1

2

1

2
1

2 2

2

2

ή  Eαπ = 5.850 J.

γ.	 Έστω F το μέτρο της δύναμης που ασκεί-
ται στο βλήμα στη χρονική διάρκεια Δt της κί-
νησής του, από τη χρονική στιγμή στην οποία 
προσκρούει στον κύβο μέχρι τη χρονική στιγ-
μή στην οποία εξέρχεται από αυτόν.
Από το Θ.Μ.Κ.Ε. για την κίνηση του βλήμα-
τος στο χρονικό διάστημα Δt έχουμε:
� ���� ���� � W

F

ή  1

2

1

2
2

2

1

2
m m F s        (1).

υ
1

M

m

F
Fʹ

υ
2

α

υ

s
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Από το Θ.Μ.Κ.Ε. για την κίνηση του κύβου 
στο χρονικό διάστημα Δt έχουμε:

� ���� ���� � �W
F   ή  1

2
0

2
M F s   

ή  1

2

2
M Fs   (2).

Με πρόσθεση κατά μέλη των (1) και (2)

έχουμε: 1

2

1

2

1

2
2

2 2

1

2
m M m F      

ή  F N= 14 625. .

δ.	 Από τη σχέση (2) βρίσκουμε: s = 0 015, m.

ε.	 Έστω υΣ το μέτρο της ταχύτητας του συσ-
σωματώματος αμέσως μετά την κρούση. 

x υΣsʹ
M+m

υ1
M

m

Από την Α.Δ.Ο. έχουμε:

m m 
1
      ή    18 m/s.

Από το Θ.Μ.Κ.Ε. για την κίνηση του βλήμα-
τος από τη χρονική στιγμή στην οποία το βλή-
μα προσκρούει στον κύβο μέχρι τη χρονική 
στιγμή στην οποία ακινητοποιείται σε σχέση 
με τον κύβο έχουμε: � ���� ���� � W

F

ή  1

2

1

2

2

1

2
m m F s x        (3).

Από το Θ.Μ.Κ.Ε. για την κίνηση του κύβου 

έχουμε: � ���� ���� � �W
F

ή  1

2

2
M Fs    (4).

Με πρόσθεση κατά μέλη των (3) και (4)  

έχουμε: 1

2

1

2

2

1

2
M m m Fx     

 
από την οποία προκύπτει: x = 0,5 m.

195.	 α.	 Έστω   η ταχύτητα του συσσω-
ματώματος αμέσως μετά την κρούση. Μετά 
την κρούση το συσσωμάτωμα ακινητοποιείται 
στιγμιαία για πρώτη φορά στη θέση Γ η οποία 
βρίσκεται σε ύψος h από το οριζόντιο επίπε-
δο που διέρχεται από τη θέση Α όπου έγινε η 
κρούση, όπως φαίνεται στο ακόλουθο σχήμα.

φ

Ο

Α



Γ

h

x



υΣM+m

Δ

βαρU 0=

υ= 0

Από το ορθογώνιο τρίγωνο ΟΔΓ έχουμε:

  x
   

ή    


h
  
ή  h    1 

ή  h =1 8, m.

Για να υπολογίσουμε το μέτρο υΣ της ταχύτη-
τας του συσσωματώματος αμέσως μετά την 
κρούση, εφαρμόζουμε την Α.Δ.Μ.Ε. για τις 
θέσεις Α και Γ της κυκλικής τροχιάς που δια-
γράφει μετά την κρούση, θεωρώντας ως επίπε-
δο μηδενικής βαρυτικής δυναμικής ενέργειας 
το οριζόντιο επίπεδο που διέρχεται από το ση-
μείο Α όπου έγινε η κρούση. Έχουμε:
E E��� ���� �� � � ��

  
ή  � �� � � �� � �U U

ή  1

2
0 0

2
M m M m gh      

ή  υΣ = 6 m/s.
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β.	 Το ποσοστό επί τοις εκατό (%) της αρχι-
κής κινητικής ενέργειας του βλήματος που 
μετατράπηκε σε θερμότητα είναι:

� �
�

�
�

� m
100%  (βλ. μεθοδολογία Γ1).

Από την εξίσωση αυτήν προκύπτει ότι 
m = 0 2, kg.

γ.	 Από την Α.Δ.Ο. για το σύστημα των δύο 
σωμάτων κατά την κρούση έχουμε:
 p p       ΄   ή  mυ0 = (Μ + m)υΣ

ή  υ0 = 150 m/s. Είναι: E�� �� ���� �� ����� �� � � �� � ΄

ή  E m m     1

2

1

2
0

2 2  

ή  Εαπ = 2.160 J.

δ.	 Έστω υ το μέτρο της ταχύτητας του συσ-
σωματώματος αμέσως μετά την κρούση και 
υʹ το μέτρο της ταχύτητάς του στο ανώτερο 
σημείο Δ της τροχιάς του. Η συνισταμένη των 
δυνάμεων που ασκούνται στο συσσωμάτωμα 
στο σημείο Δ δρα ως κεντρομόλος δύναμη. 

Επομένως: �F F� �   ή  T w
M m

 
   2



ή  T
M m

M m g
     2



  (1).

ΑΑ

Δ

Ο

ʹυ

w

T

Σ

Ο

(+)

υ
ʹυ0 M+mm βαρU 0=

Για να εκτελέσει το συσσωμάτωμα ανακύκλω-
ση, πρέπει να φτάσει στη θέση Δ με το νήμα 
τεντωμένο. Συνεπώς, στη θέση αυτή πρέπει να 
ισχύει: T ≥ 0  ή, λόγω της (1):

M m
M m g

     
 2

0
   

ή    g

οπότε:  
min

g   ή   
min

.6 m s/

Από την Α.Δ.Μ.Ε. για τις θέσεις Α και Δ της 
κυκλικής κίνησης του συσσωματώματος μετά 
την κρούση έχουμε: E E��� ��� ��� ���� � � ��

  
ή  

1

2

1

2

2 2
M m M m      

min
� �� �M m g2

ή    180 m/s   ή  υ = 13,41 m/s.

Από την Α.Δ.Ο για το σύστημα των δύο σωμά-
των κατά την κρούση έχουμε:
 

p p   ( ) ( )
 ΄   ή  m M m    

0

ή  ′ =υ0 335 25,  m/s.

196.	 α.	 Για το ύψος h έχουμε:   x


ή    


h
  
ή  h    1  .

φ

φφ

Ο

Γ



Α

υΣ

Ο

Γ



Α
h

x

m

υ0 υ1

(+)

υ

ΜΕΤΑΠΡΙΝ

βαρU 0=

Σ

Σ
w

wx wy

T

Για να υπολογίσουμε το μέτρο υ1 της ταχύ-
τητας του σώματος Σ ακριβώς πριν από την 
κρούση, εφαρμόζουμε την Α.Δ.Μ.Ε για την 
κίνηση του σώματος Σ1 από τη θέση Α στη 
θέση Γ.
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E E��� ��� ��� ���� � � ��   ή  � ���� ��� ��� ���� � �U U

ή  0
1

2
0

1

2  gh M

ή   
1

2 1  g   
ή  υ1 = 4 m/s.

β.	 Για να υπολογίσουμε το μέτρο υΣ της τα-
χύτητας του συσσωματώματος αμέσως μετά 
την κρούση, εφαρμόζουμε την Α.Δ.Μ.Ε για 
τις θέσεις Γ και Α της κυκλικής τροχιάς που 
διαγράφει το συσσωμάτωμα μετά την κρούση.
E E��� ��� ��� ���� � � ��

ή  1

2

1

2

2 2
M m M m      � �� �M m gh

ή        2
2 1g   ή  υΣ = 5 m/s.

γ.	 Από την Α.Δ.Ο. για το σύστημα βλήμα-
σώμα Σ κατά την κρούση, θεωρώντας θετική 
τη φορά της ταχύτητας του βλήματος ακριβώς 
πριν από την κρούση, έχουμε:
 

p p   ( ) ( )
 ΄   ή  m m  

0 1
     

ή  m 
 


 



 

 
1

0   
ή  m = 0 1, kg .

δ.	 Οι δυνάμεις που ασκούνται στο συσσωμά-
τωμα τη χρονική στιγμή στην οποία διέρχεται 
για πρώτη φορά μετά την κρούση από τη θέση 
A είναι η τάση 



Τ  του νήματος και το βάρος 
του w.  Για τον ζητούμενο ρυθμό έχουμε: 

dK

dt

w

dt

ds
x    ή  dK

dt
M m g    

ή  
dK
dt

J s 37 5 3, / .

197.	 α.	 Υπολογίζουμε το μέτρο υ1 της τα-
χύτητας του σώματος Σ1 ακριβώς πριν από 
την κρούση, εφαρμόζοντας την Α.Δ.Μ.Ε. για 

την κίνηση του σώματος Σ1 από τη θέση όπου 
αφέθηκε ελεύθερο να κινηθεί κυκλικά μέχρι 
τη θέση ακριβώς πριν από την κρούση του με 
το σώμα Σ2. Έχουμε:

E E��� ��� ��� ���� � � ��
  
ή  m g m

1 1 1

21

2
  

ή  
1

10 m/s.

Το όριο θραύσης T��  του νήματος ισούται με 
το μέτρο της δύναμης που ασκείται στο σώμα 
Σ1 από το νήμα ακριβώς πριν από την κρούση. 

Έχουμε: �F F��� ��   ή  T m g
m


 

1

1 1

2



ή  Τθρ = 60 Ν.

β.	 Έστω υΣ το μέτρο της ταχύτητας του συσ-
σωματώματος Σ αμέσως μετά την κρούση του 
σώματος Σ1 με το σώμα Σ2. Από την Α.Δ.Ο. για 
το σύστημα των σωμάτων Σ1 και Σ2 κατά την 
κρούση έχουμε: 

 

p p   ( ) ( )
 ΄

ή  m m m
1 1 1 2
       ή  υΣ = 4 m/s.

γ.	 Έστω υ το μέτρο της κοινής ταχύτητας που 
αποκτούν το συσσωμάτωμα και η σανίδα. Από 
την Α.Δ.Ο. για το σύστημα συσσωμάτωμα - 

σανίδα έχουμε:  p p�� ��� �� ���� � � ��    

ή  m m m m
1 2 1 2
       

ή    2 m/s.

Το συνολικό ποσό θερμότητας που εκλύεται 
από τη χρονική στιγμή t = 0  ακριβώς πριν 
από την κρούση μέχρι τη χρονική στιγμή t

1
 

στην οποία το συσσωμάτωμα ακινητοποιείται 
σε σχέση με τη σανίδα είναι: Q E E�� ��� ���� �   
ή  Q m m m M      1

2

1

2
1 1

2

1 2

2

ή  Qολ = 80 J.
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δ.	 Το μέτρο α1 της επιβράδυνσης του συσ-
σωματώματος κατά την ολίσθησή του πάνω  
στη σανίδα είναι:
�F m m

x
� �� �1 2 1

�   ή  � � �� �m m
1 2 1

�   (1).

Α Γ

Α Γ

υ

M

M

Σ

υΣ

Tʹw

T
N

d
L

Δx2 υ

Δx1

Αντικαθιστώντας την τριβή έχουμε:
� �m m g m m

1 2 1 2 1
�� � � �� �   ή  �

1
2� m/s

2
.

Η χρονική στιγμή t
1

 υπολογίζεται από την 
εξίσωση:     t

1
  ή  t

1
1= s.

Η μετατόπιση του συσσωματώματος από τη 
χρονική στιγμή t = 0  έως τη χρονική στιγμή 

t
1

 είναι:  x t t
1 1 1 1

21

2
     ή  �x

1
3� m.

Έστω α2 το μέτρο της επιτάχυνσης με την 
οποία κινείται η σανίδα στο χρονικό διάστημα 
από t = 0  έως t

1
.  Έχουμε:  �F M

x
� �

2

ή  � �� M�
2
  ή  T M� �

2   ή, λόγω της (1): 

m m M
1 2 1 2
�� � �� �   ή  �

2
2� m/s

2
.

Η μετατόπιση της σανίδας από τη χρονική 
στιγμή t = 0  έως τη χρονική στιγμή t

1
 είναι:

�x t
2 2 1

21

2
� �   ή  �x

2
1� m.

Όπως φαίνεται στο προηγούμενο σχήμα η 
απόσταση d του συσσωματώματος από το 
άκρο Γ της σανίδας τη χρονική στιγμή t

1
 εί-

ναι: � �x L x d
2 1
� � �

ή  d L x x� � �� �
2 1   ή  d = 3 m.

198.	 α.	 Για να υπολογίσουμε το μέτρο 
υ της ταχύτητας του συσσωματώματος Σ 
αμέσως μετά την κρούση, εφαρμόζουμε την 
Α.Δ.Μ.Ε. μεταξύ των θέσεων Α και Γ της κυ-
κλικής τροχιάς που διαγράφει το συσσωμάτω-
μα μετά την κρούση. Έχουμε:

υ  = 0

φ

R K

h

R

Ζ

Σ

x

Β

Α

υ

ʹυ

wxwy

w

N

Γ

βαρU 0=

Δs

φ

ʹ́

E E     

ή  1

2
1 2

2

1 2
m m m m gR    

ή  υ = 6 m/s.

β.	 Για να υπολογίσουμε το μέτρο   της 
ταχύτητας του συσσωματώματος τη χρονική 
στιγμή στην οποία ανερχόμενο στο τεταρτο-
κύκλιο διέρχεται από το σημείο Ζ που βρίσκε-
ται σε ύψος h = 0 9, m  από το οριζόντιο δάπε-
δο, εφαρμόζουμε την Α.Δ.Μ.Ε. για τις θέσεις 
Α και Ζ της κίνησής του μετά την κρούση:

E E     

ή  1

2

1

2
1 2

2

1 2

2
m m m m      

                                � �� �m m gh
1 2

ή    3 2 m/s.

Από το ορθογώνιο τρίγωνο ΚΒΖ έχουμε: 

  x

R
  ή    R h

R
  ή    1

2
.
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Η συνισταμένη των δυνάμεων που ασκού-
νται στο συσσωμάτωμα στη θέση Z, κατά τη 
διεύθυνση της ακτίνας, δρα ως κεντρομόλος  
δύναμη. Επομένως: �F F��� ��

ή    
  

w
m m

R
y

1 2

2

ή      
  

m m g
m m

R
1 2

1 2

2




ή  Ν = 45 Ν.

γ.	 Επειδή κατά την κίνηση του συσσωμα-
τώματος στο τεταρτοκύκλιο η μηχανική του 
ενέργεια διατηρείται σταθερή, όταν επιστρέ-
ψει στο σημείο Α, το μέτρο της ταχύτητάς του 
θα είναι ίσο με το μέτρο υ της ταχύτητας που 
είχε αμέσως μετά την κρούση. 

Για να υπολογίσουμε τον συντελεστή τριβής 
ολίσθησης μ μεταξύ του συσσωματώματος 
και του οριζόντιου δαπέδου, εφαρμόζουμε το 
Θ.Μ.Κ.Ε. για την κίνησή του μεταξύ των θέ-
σεων Α και Δ.
� ���� ���� � � �W W W

T N w

ή  0
1

2
0 0

1 2

2

1 2
        m m m m gs 

ή  μ = 0,3.

δ.	 Από την Α.Δ.Ο. για το σύστημα των δύο 
σωμάτων κατά την κρούση έχουμε:
 

p p   ( ) ( )
 ΄   ή  m m m

1 1 1 2
   

ή  
1

9 m/s.

Το συνολικό ποσό θερμότητας είναι:

Q E E�� �� ��� �� ���� �� � � �    ή  Q m  1

2
0

1 1

2

ή  Qολ = 81 J.

199.	 α.	 Από την Α.Δ.Μ.Ε. για την κίνηση 
του σώματος Σ1 πριν από την κρούση έχουμε:
E E��� ��� ��� ���� � � ��

ή  1

2

1

2
0

1 0

2

1 1

2

1 1
m m m gh   

ή  υ1 = 10 m/s.

Από την Α.Δ.Μ.Ε. για την κίνηση του σώμα-
τος Σ2 πριν από την κρούση έχουμε:
E E��� ��� ��� ���� � � ��

ή  m gh m m gh
2 2 2 2

2

2 1

1

2
 

ή  υ2 = 30 m/s.

β.	 Έστω ότι το συσσωμάτωμα αμέσως μετά 
την κρούση αποκτά ταχύτητα υ  με φορά προς 
την κορυφή του κεκλιμένου επιπέδου. Σε αυ-
τήν την περίπτωση το συσσωμάτωμα θα επι-
βραδύνεται με επιβράδυνση μέτρου α μέχρι να 
ακινητοποιηθεί στιγμιαία. Έχουμε:
�F m m

x
� �� �1 2

�

ή  m m g m m
1 2 1 2
�� � � �� ���� �

ή  � � 5 m/s
2
.

Για το διάστημα s που διανύει το συσσωμά-
τωμα στο κεκλιμένο επίπεδο από τη χρονική 
στιγμή t = 0  αμέσως μετά την κρούση έως τη 
χρονική στιγμή t

1
 ισχύει:

s t t  
1 1

21

2   
ή    s

t
t

1

1

1

2   
ή    10 m/s.

Από την Α.Δ.Ο. για το σύστημα των δύο σω-
μάτων, θεωρώντας θετική τη φορά της ταχύ-
τητας υ

1
,  έχουμε: 

 

p p   ( ) ( )
 ΄

ή  m m m m
1 1 2 2 1 2
     

ή  10 30 10
1 2 1 2

m m m m� � �� �
ή  m

2
0=  που είναι άτοπο.
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Συνεπώς, το συσσωμάτωμα αμέσως μετά την 
κρούση κινείται προς τη βάση του κεκλιμένου 
επιπέδου επιταχυνόμενο με επιτάχυνση μέ-
τρου � � 5 m/s

2
.  

Για το διάστημα s που διανύει από τη χρονική 
στιγμή t = 0  έως τη χρονική στιγμή t

1
2= s  

στο κεκλιμένο επίπεδο ισχύει:

s t t  
1 1

21

2
  ή  υ = 0.

Από την Α.Δ.Ο έχουμε:

m m
1 1 2 2

0     ή  m

m

1

2

2

1

 


  ή  m
m
1

2

3= .

γ.	 Το ζητούμενο ποσοστό είναι:

�
��� ���� ��� ����

��� ����

�
�

�� � � �

� �

� �

�
100%

΄   ή




 
 

    

 







 
1

1

2

1

2

1

2

1 2

2

1 2 1

1 1

2

2 2

2

1 1 2 1

m m m m gh

m m m gh m gh








100% 

ή  π = 50%.

200.	 Βλ. βασική άσκηση 13.

α.	 
1

5 3

4
 m/s.

β.	 Q� � 7 5, J.

γ.	 s = 0 6, m.

δ.	 dp

dt
= 80 kg m/s

2
.

201.	 α.	 Για να υπολογίσουμε το μέτρο της 
ταχύτητας υ1 του σώματος Σ1 ακριβώς πριν 
από την κρούση, εφαρμόζουμε την Α.Δ.Μ.Ε. 
για την κίνησή του στο τεταρτοκύκλιο από τη 
θέση Α στη θέση Γ.

E E
A        

ή  m gR m
1 1 1

21

2
 

ή  
1

6 m/s.

Από την Α.Δ.Ο. για το σύστημα των Σ1 και Σ2 
κατά την κρούση υπολογίζουμε το μέτρο υΣ 
της ταχύτητας του συσσωματώματος αμέσως 
μετά την κρούση: 

 

p p   ( ) ( )
 ΄

ή  m m m
1 1 1 2
       ή  υΣ = 3 m/s.

β.	 Το συσσωμάτωμα κινείται στο οριζόντιο 
δάπεδο με σταθερή ταχύτητα μέτρου υΣ και 
προσκρούει στο ελεύθερο άκρο του ελατηρίου. 
Από την Α.Δ.Ο. για το σύστημα συσσωμάτω-
μα - σώμα Σ3 υπολογίζουμε το μέτρο της κοι-
νής τους ταχύτητας υ τη χρονική στιγμή στην 
οποία το ελατήριο έχει τη μέγιστη συσπείρω-
σή του ∆

max
.  Είναι:

 p p�� ��� �� ���� � � ��

ή  m m m m m
1 2 1 2 3
      

ή    1 m/s.

Η μέγιστη συσπείρωση ∆
max

 του ελατηρίου 
υπολογίζεται από την Α.Δ.Μ.Ε. για το σύστη-
μα συσσωμάτωμα - σώμα Σ3:
E E��� ��� ��� ���� � � ��

ή  � ���� �� ��� ��� �� ���� � �� � � �U U

ή  1

2

1

2
0

1 2

2

1 2 3

2
m m m m m      

                                   � � �1

2

2

k
max

�

ή  Δmax = 0 2, m.

γ.	 Η επαφή του συσσωματώματος με το  
ελατήριο χάνεται τη χρονική στιγμή στην 
οποία το ελατήριο αποκτά ξανά το φυσικό του 
μήκος. 
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Έστω   και υ3 τα μέτρα των ταχυτήτων του 
συσσωματώματος και του σώματος Σ3 αντί-
στοιχα τη χρονική στιγμή στην οποία το ελα-
τήριο αποκτά ξανά το φυσικό του μήκος. 
Από την Α.Δ.Ο. για το σύστημα συσσωμάτω-
μα - σώμα Σ3, θεωρώντας θετική τη φορά προς 
τα δεξιά, έχουμε:  p p�� ��� �� ���� � � ��

ή  m m m m m
1 2 1 2 3 3
       

ή  m m m
1 2 3 3
        (1).

Από την Α.Δ.Μ.Ε έχουμε: E E��� ��� ��� ���� � � ��    

ή  � ���� �� ��� ��� �� ���� � �� � � �U U

ή  1

2
0

1

2
1 2

2

1 2

2
m m m m       

                                    1

2
0

3 3

2
m 

ή  m m m
1 2

2 2

3 3

2      

ή  m m m
1 2 3 3

2              (2).

Από τη διαίρεση των σχέσεων (2) και (1) κατά 
μέλη προκύπτει:      3  (3).

Λύνοντας το σύστημα των εξισώσεων (1) 
και (3) προκύπτει ότι    1 m/s,  οπότε 

′ =υ 1 m /s.

δ.	 Το συσσωμάτωμα μετά την απώλεια της 
επαφής του με το ελατήριο κινείται στο ορι-
ζόντιο δάπεδο προς τα αριστερά με σταθερή 
ταχύτητα μέτρου   και αρχίζει να ανέρχεται 
στο τεταρτοκύκλιο φτάνοντας μέχρι το σημείο 
Δ το οποίο βρίσκεται σε ύψος h από το οριζό-
ντιο δάπεδο. Για να υπολογίσουμε το ύψος h, 
εφαρμόζουμε την Α.Δ.Μ.Ε. για την κίνηση του 
συσσωματώματος μεταξύ των θέσεων Γ και Δ, 
θεωρώντας ως επίπεδο μηδενικής βαρυτικής 
δυναμικής ενέργειας το οριζόντιο δάπεδο.

R Ο

h

R

Δ
1 2m m

Γ

Α

ʹυ
βαρU 0

Έχουμε: E E��� ���� �� � � ��  

ή  � �� � � �� � �U U

ή  1

2
00

1 2

2

1 2
m m m m gh     

ή  h
g


 2

2   
ή  h = 0 05, m.

Οι δυνάμεις που ασκούνται στο συσσωμάτω-
μα στο σημείο Δ είναι: το βάρος του w  και 
η ακτινική δύναμη 



N  από το τεταρτοκύκλιο.
Τη χρονική στιγμή στην οποία το συσσωμά-
τωμα ακινητοποιείται στιγμιαία στο σημείο Δ 

ισχύει: �
 

F��� � 0   ή  






� � �w
y

0   ή  N w
y

� � 0   
ή  N w    ή  N m m g  1 2

  (4).

φ

R Ο

h

R

Δ

x

Ζ

Γ

wxwy

w

φ

N

υ = 0

Από το ορθογώνιο τρίγωνο ΟΖΔ που φαίνεται 

στο προηγούμενο σχήμα έχουμε:   x

R

ή    R h

R   
ή    35

36
.

Άρα, από την (4) προκύπτει: N = 350
18

N.
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202.	 α.	 Έχουμε: � ��� ���� �� ����� � � ��
25

100
΄

ή  1

2

25

100

1

2

2

0

2
m m  

  
ή    0

2

ή    200 m/s.

Έστω υ1 το μέτρο της ταχύτητας του σώματος 
Σ αμέσως μετά την κρούση. 
Από την Α.Δ.Ο. για το σύστημα βλήμα - σώμα 
Σ κατά την κρούση έχουμε:  

p p   ( ) ( )
 ΄

ή  m M m  
0 1
    ή  υ1 = 10 m/s.

β.	 Υπολογίζουμε το μέτρο   της ταχύτητας 
του σώματος Σ στη θέση όπου το νήμα γίνεται 
για πρώτη φορά οριζόντιο μετά την κρούση, 
εφαρμόζοντας την Α.Δ.Μ.Ε. για τις θέσεις 
Α και Γ της κυκλικής τροχιάς που διαγράφει 
το σώμα Σ μετά την κρούση, όπως φαίνεται  
στο παρακάτω σχήμα.

Α

Ο
Γ

w

ʹυ

Σ υ1 βαρU 0=

ΜΕΤΑ

Tʹ

E E     

ή  1

2

1

2
1

2 2     g  
 
ή    8 m/s.

Στη θέση Γ η τάση που ασκείται στο σώμα Σ 
από το νήμα δρα ως κεντρομόλος δύναμη. 

Επομένως: � �T F�   ή   


T
M 2



ή   T 640
9
N.

γ.	 Έχουμε: 
dU

dt

dW

dt

w��� � �

ή  
dU

dt

wds

dt

��� � �
�� �

  
ή  

dU

dt
w

   

ή  
dU

dt
Mg

   
  
ή  
dU
dt
βαρ = +160 J/s.

δ.	 Για να εκτελέσει το σώμα Σ ανακύκλωση 
μετά την κρούση, πρέπει να φτάσει στο ανώτε-
ρο σημείο Δ της κυκλικής τροχιάς που διαγρά-
φει μετά την κρούση με το νήμα τεντωμένο 
T �� �0 .

Για να υπολογίσουμε το μέτρο υ2 της ταχύτη-
τας με την οποία το σώμα Σ διέρχεται από το 
σημείο Δ, εφαρμόζουμε την Α.Δ.Μ.Ε μεταξύ 
των θέσεων Α και Δ, θεωρώντας ως επίπεδο μη-
δενικής βαρυτικής δυναμικής ενέργειας το ορι-
ζόντιο επίπεδο που διέρχεται από το σημείο Α:

Α

Ο

w

T

Σ

υ2

υ1

Δ

βαρU 0=





E E��� ���� �� � � ��
  
ή  � �� � � �� � �U U

ή  1

2
0

1

2
2

1

2

2

2
M M Mg    

ή   
2 1

2
4  g   ή  

2
28 m/s.
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Οι δυνάμεις που ασκούνται στο σώμα Σ στο 
ανώτερο σημείο Δ της τροχιάς του είναι η 
τάση 



Τ  του νήματος και το βάρος του w.  
Η συνισταμένη των δυνάμεων αυτών δρα ως  
κεντρομόλος δύναμη. Επομένως: �F F� �

ή  T w
M  

2

2

   
ή  T

M
g 

2

2





ή  Τ = 11,1 Ν.

Αφού T > 0,  το νήμα στη θέση Δ είναι τεντω-
μένο και το συσσωμάτωμα μετά την κρούση 
εκτελεί ανακύκλωση.

203.	 α.	 Έστω υ το μέτρο της ταχύτητας 
του σώματος Σ2 τη χρονική στιγμή στην οποία 
διέρχεται από το ανώτερο σημείο Γ της τρο-
χιάς του.

K

Σ1

υZ

Σ2

h

Γ

ʹυ1 ʹυ2

w2y

w2x
N

w2

N2
w2

φ

φ

Μ

υ

Α

Ζ

βαρU 0=

Η συνισταμένη των δυνάμεων που ασκούνται 
στο σώμα Σ2 στη θέση Γ δρα ως κεντρομόλος 
δύναμη. Επομένως: �F F� �

ή    w
m

R
2

2

2   ή  N
m

R
m g 2

2

2

  (1).

Για να εκτελέσει το σώμα Σ2 ανακύκλωση, 

πρέπει να ισχύει: � � 0   ή, λόγω της (1):

m g
m

R
2

2

2

    ή    gR , οπότε:


min

 3 2, m/s.

Έστω ��2  το μέτρο της ταχύτητας του σώματος 
Σ2 αμέσως μετά την κρούση. 

Από την Α.Δ.Μ.Ε. για την κίνηση του σώμα-
τος Σ2 μεταξύ των θέσεων Α και Γ μετά την 
κρούση έχουμε: E E     

ή  1

2

1

2
2

2 2

2

2

2

2
m m m g R

min
   

ή  ′ =υ2 4 m /s.

β.	 Το μέτρο 1  της ταχύτητας του σώματος 

Σ1 αμέσως μετά την κρούση είναι:

 
1

s

t
  ή   

1
4 m/s.

Από την Α.Δ.Ο. για το σύστημα των δύο σω-
μάτων κατά την κρούση, θεωρώντας θετική τη 
φορά της ταχύτητας υ

1
,  έχουμε:

 

p p   ( ) ( )
 ΄   ή  m m m

1 1 1 1 2 2
     

ή  
1

8 m/s.

Για τις κινητικές ενέργειες του συστήματος 
πριν και μετά την κρούση έχουμε:

     1

2
32

1 1

2
m J

  
και

΄       
1

2

1

2
1 21

2

2

2
m m

ή  Κολ(μετά) = 32 J.

Άρα η κρούση είναι ελαστική.

γ.	 Έχουμε: � ����

����

� �� �

� �

�

�
2

1

100%
΄

ή   



 


1

2

1

2

100
2 2

2

1 1

2

m

m

%

  

ή  π = 75%.
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δ.	 Το μέτρο της ταχύτητας υΖ του Σ2 τη χρο-
νική στιγμή στην οποία διέρχεται για πρώτη 
φορά μετά την κρούση από το σημείο Ζ του 
κυκλικού οδηγού υπολογίζεται εφαρμόζοντας 
την Α.Δ.Μ.Ε. για τις θέσεις Α και Ζ της κυκλι-
κής τροχιάς που διαγράφει μετά την κρούση: 

E E     
  
ή  � ���� ��� ��� ���� � �U U

ή  1

2
0

1

2
2 2

2

2

2

2
m m m gh    

ή  
Z
 6 4, m/s.

Η συνισταμένη των δυνάμεων που ασκούνται 
στο σώμα Σ2 στο σημείο Ζ, κατά τη διεύθυνση 
της ακτίνας, δρα ως κεντρομόλος δύναμη. 
Επομένως: �F F��� ��   

ή   
2

2

2

2
 m

R
m g


  (2).

Από το ορθογώνιο τρίγωνο ΚΜΖ έχουμε:

��� �
� �
� �
��
��   

ή  ��� � �h R

R   
ή  ��� � 1

2
.

Με αντικατάσταση των τιμών στη σχέση (2) 
βρίσκουμε: N2 45= N.

204.	 α.	 Οι ορμές ′p
1
 και ′p

2
 των σφαιρών 

Σ1 και Σ2 αντίστοιχα αμέσως μετά την κρούση 
και η ορμή p

1
 της σφαίρας Σ1 πριν από την 

κρούση φαίνονται στο παρακάτω σχήμα.

φ

ʹp
1

ʹp
2

p
1

ʹp
1

ʹp
2

p
1

Σ1 Σ2

Σ1

Σ2

Η ορμή του συστήματος των δύο σφαιρών  
διατηρείται σταθερή κατά την κρούση. Επο-
μένως:  

p p   ( ) ( )
 ΄   ή    

p p p
1 1 2
� � � �  (1).

Σύμφωνα με τη σχέση (1), από το διανυσματι-
κό άθροισμα των ορμών ′p

1
 και ′p

2
 των σφαι-

ρών μετά την κρούση προκύπτει η ορμή p
1
 

της σφαίρας Σ1 πριν από την κρούση.

φ

ʹp
1

ʹp
2

p
1

ʹp
1

ʹp
2

p
1

Σ1 Σ2

Σ1

Σ2

Συνεπώς, για το μέτρο της ορμής p
1
 της σφαί-

ρας Σ1 πριν από την κρούση ισχύει:

p p p p p
1 1

2

2

2

1 2
2        (2) όπου φ η γω-

νία που σχηματίζουν τα διανύσματα των ορ-
μών ′p

1
 και ′p

2
.  

Από τη (2) έχουμε: p p p p p
1

2

1

2

2

2

1 2
2      

ή  m m m
1 1

2

1 1

2

2 2

2

          

                      2
1 1 2 2

m m    

ή  m m m
1

2

1

2

1

2

1

2

2

2

2

2       2
1 2 1 2

m m   .

Επειδή � � �90 ,  η παραπάνω εξίσωση γράφε-

ται: m m m
1

2

1

2

1

2

1

2

2

2

2

2    

ή  m m
1

2

1

2

1

2

2

2

2

2       (3).

Επειδή η κρούση είναι ελαστική, η κινητική 
ενέργεια του συστήματος διατηρείται σταθερή 
κατά την κρούση. Επομένως: Κολ(πριν) = Κολ(μετά)

ή  1

2

1

2

1

2
1 1

2

1 1

2

2 2

2
m m m    

ή  m m m
1 1 1 1

2

2 2

22    

ή  m m
1 1

2

1

2

2 2

2       (4).

Με διαίρεση κατά μέλη των (3) και (4) προκύ-

πτει: m m
1 2
=   ή  m

m
1

2

1= .

β.	 Έχουμε: � �
 



p p
1 2

0� �   ή  � �
 

p p
1 2
� � ,

οπότε: � �
 

p p
1 2
�   ή  Δ�p2 4= kg m /s.
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γ.	 Η κινητική ενέργεια της σφαίρας Σ2 μετά 

την κρούση είναι: K m
2 2 2

21

2
   (5).

Η μεταβολή της ορμής της σφαίρας Σ2 εξαιτίας 
της κρούσης είναι:  

p m
2 2 2
 

ή  p m
2 2 2
   (6).

Με διαίρεση κατά μέλη των (5) και (6) έχουμε:
K

p

2

2

2

2


   ή  ′ =υ2 4 m/s  (7).

Με αντικατάσταση της (7) στην (6) προκύπτει 
ότι m

2
1= kg.  Συνεπώς, είναι m m

1 2
1= = kg.

Με αντικατάσταση των τιμών των μεγεθών 
στην (4) βρίσκουμε: ′ =υ1 4 3 m/s.

δ.	 Το ζητούμενο ποσοστό υπολογίζεται από 

είναι: 



 


1

2

1

2

100
2 2

2

1 1

2

m

m

%   ή  π = 25%.

205.	 α.	 Από την Α.Δ.Ο. για το σύστημα 
των δύο σφαιρών στον άξονα xʹx, θεωρώντας 
θετική τη φορά προς τα δεξιά, έχουμε:

m m m
x1 1 2 2 1 1

       ή   
1

2
x

m/s.  (1).

Από την Α.Δ.Ο. για το σύστημα των δύο σφαι-
ρών στον άξονα yʹy, θεωρώντας θετική τη 
φορά προς τα πάνω, έχουμε:

0
1 21 2

  m m
y

    ή    
1 2y

 (2).

Επειδή η κρούση είναι ελαστική, ισχύει:
� ��� ���� �� ����� � � �� ΄

ή  1

2

1

2

1

2

1

2
1 1

2

2 2

2

1 1

2

2 2

2
m m m m      

ή     
1

2

2

2

1

2

2

2   

ή      
1

2

2

2

1

2

1

2

2

2     
x y   ή, λόγω των (1) 

και (2): ′ =υ2 2 2 m/s .

Συνεπώς, από την εξίσωση (2) προκύπτει ότι 

 
1

2 2
y

m/s,  οπότε τελικά:

     
1 1

2

1

2

x y
  ή  ′ =υ1 2 3 m/s .

β.	 Έχουμε: 








1

1

y

x

  ή  εφθ = 2 .

γ.	 Η μεταβολή της ορμής της σφαίρας Σ2 
εξαιτίας της κρούσης στον άξονα xʹx είναι:
�
  

p p p
x x x2 2 2
� �� � � ���� ���   ή  �p m

x2 2 2
0� � �

ή  p
x2

2  kg m/s.

Η μεταβολή της ορμής της σφαίρας Σ2 στον 
άξονα yʹy είναι: �  

p p p
y y y2 2 2
� �� � � ���� ���

ή  p m
y2 2 2

0     ή  �p
y2

2 2� � kg m/s.

Επομένως: � � �p p p
x y2 2

2

2

2

� � � � � �
ή  Δp2 2 3= kg m/s .

Eπειδή η ορμή του συστήματος των δύο σφαι-
ρών διατηρείται κατά την κρούση, ισχύει:
� �
 



p p
1 2

0� �   ή  � �
 

p p
1 2
� �  οπότε:

� �p p
1 2
�   ή  Δp1 2 3= kg m/s .

206.	 α.	 Αναλύουμε την ταχύτητα υ  στις 
συνιστώσες υx  και υ

y
,  όπως φαίνεται στο 

ακόλουθο σχήμα.

υ1

υ2

Σ1

Σ2

υy

υx

φ

x ́ x ́ x x 

y ́

y y 

υ

y ́

Σ

Εφαρμόζουμε την αρχή διατήρησης της ορμής 
για το σύστημα των δύο σωμάτων στον άξονα 
xʹx:  

p p
x x       ΄
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ή  m m m
x1 1 1 2

   
ή  m m m

1 1 1 2
      ή  υ1 = 20 m/s.

Εφαρμόζουμε την αρχή διατήρησης της  
ορμής για το σύστημα των δύο σωμάτων στον 
άξονα yʹy:  

p p
y y       ΄

ή  m m m
y2 2 1 2

   
ή  m m m

2 2 1 2
      ή  υ2 = 20 m/s.

β.	 Το ζητούμενο ποσοστό είναι:

�
�� ���� �� ����

�� ����

�
�

�� � � �

� �

� �

�
100%

΄

ή  


 
 

 


















1

1

2

1

2

1

2

100
1 2

2

1 1

2

2 2

2

m m

m m

%

ή  π = 50%.

γ.	 Από την Α.Δ.Ο. για το σύστημα των δύο 
σωμάτων στον άξονα xʹx έχουμε:
 

p p
x x       ΄   

ή  m m m
x x1 1 1 1 2 2

    

ή  m m m
1 1 1 1 2 2
        (1).

Από την Α.Δ.Ο. για το σύστημα των δύο σω-
μάτων στον άξονα yʹy έχουμε:
 

p p
y y       ΄   

ή  m m m
y y2 2 1 1 2 2

    

ή  m m m
2 2 1 1 2 2
        (2).

ʹυ1

ʹυ2

θ

θ

Σ2

Σ1

x ́ x 

y ́

y 

ʹυ2x

ʹυ2y

ʹυ1x

ʹυ1y

υ1

υ2

Σ1

Σ2

x ́ x 

y 

y ́

θ

θ

Από την επίλυση του συστήματος των εξισώ-
σεων (1) και (2) προκύπτουν: ′ =υ1 28 m/s και

′ =υ2 4 m/s.

δ.	 Η μεταβολή της ορμής της σφαίρας Σ1 
στον άξονα xʹx εξαιτίας της κρούσης είναι:
�
  

p p p
x x x1 1 1
� �� � � ���� ���

ή  p m m
x1 1 1 1 1
   

ή  �p
x1

3 2� � , kg m/s.

Η μεταβολή της ορμής της σφαίρας Σ1 στον 
άξονα yʹy εξαιτίας της κρούσης είναι:
�
  

p p p
y y y1 1 1
� �� � � ���� ���

ή  p m
y1 1 1

0  

ή  �p
y1

22 4� , kg m/s.

Το μέτρο της μεταβολής της ορμής της σφαί-
ρας Σ1 εξαιτίας της κρούσης είναι:

� � �p p p
x y1 1

2

1

2

� � � � � �
ή  Δp1 16 2= kg m/s .

207.	 α.	 Έστω υ το μέτρο της ταχύτητας του 
συσσωματώματος αμέσως μετά την κρούση. 
Από την Α.Δ.Ο. για το σύστημα σώμα Σ - βλή-
μα στον άξονα xʹx κατά την κρούση έχουμε:
 

p p
x x       ΄   ή  m m M

x
 

0
  

ή  mυ0συνφ = (m + M)υ  ή  υ = 6 m/s.

Qκρ = Κολ(πριν) – Κολ(μετά)  ή  Qκρ = 5.910 J.

β.	 Για να εκτελέσει το συσσωμάτωμα ανακύ-
κλωση, πρέπει να φτάσει στο ανώτερο σημείο 
Δ της κυκλικής τροχιάς που διαγράφει μετά 
την κρούση με το νήμα τεντωμένο.
Συνεπώς, στη θέση Δ πρέπει να ισχύει � � 0.  
Έστω ότι το συσσωμάτωμα φτάνει στη θέση Δ 
με ταχύτητα μέτρου  .
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Ο

w

T

M+m

Α

Δʹυ

υ βαρU 0=

Εφαρμόζουμε την Α.Δ.Μ.Ε. για τις θέσεις Α 
και Δ της κυκλικής τροχιάς που διαγράφει το 
συσσωμάτωμα μετά την κρούση:

� �� ���� ���� � � ��
  
ή  � �� � � �� � �U U

ή  1

2

1

2
0

2 2
m M m M      

                                     m M g2

ή    12 m/s.

Η συνισταμένη των δυνάμεων που ασκούνται 
στο συσσωμάτωμα στη θέση Δ δρα ως κεντρο-
μόλος δύναμη. Επομένως: �F F� �

ή  T M m g
M m

   
   2



ή  T
M m

M m g
     2



ή  T = 50 N.

Συνεπώς, το συσσωμάτωμα μετά την κρού-
ση θα εκτελέσει ανακύκλωση.

γ.	 Έστω υ1 το μέτρο της ταχύτητας του συσ-
σωματώματος στη θέση Γ. 

Ο

h



Γ

wx wy

φ
w

υ1

Α

Δ

Ν
Ζ

φ

υ2

M+m υβαρU 0=

Tʹ

Από την Α.Δ.Μ.Ε. μεταξύ των θέσεων Α και Γ 
έχουμε:       

ή  1

2

1

2
0

2

1

2    m M m   

                                   � �� �M m gh

ή  
1

3 2 m/s.

Από το ορθογώνιο τρίγωνο ΟΖΓ  έχουμε:

   
  




h 



  ή    1

2
  ή  � � �30 .

Η συνισταμένη των δυνάμεων που ασκούνται 
στο συσσωμάτωμα στο σημείο Γ, κατά τη  
διεύθυνση της ακτίνας, δρα ως κεντρομόλος 
δύναμη. Επομένως: �F F��� ��

ή    
 

T w
M m

x


1

2



ή   
    T

M m
M m g


1

2



ή   T 125 N.

δ.	 Έστω υ2 το μέτρο της ταχύτητας του συσ-
σωματώματος τη χρονική στιγμή στην οποία 
το νήμα γίνεται για δεύτερη φορά οριζόντιο 
μετά την κρούση (θέση N). 
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Από την Α.Δ.Μ.Ε. για τις θέσεις Α και N έχου-
με:       

ή  1

2

1

2

2

2

2��� � � �� �m M m� � � �� �� m g

ή  
2

24 m/s.

Η μεταβολή της ορμής του συσσωματώματος 
κατά την κίνησή του από τη θέση Α στη θέση 
N είναι: �  p p p� ���� ���   ή  �  

p p p
N A

� �   
ή  �  

p p p
N A

� � �� �  όπου p
N

 και p
A

 είναι οι 
ορμές του συσσωματώματος στις θέσεις Ν και 
Α αντίστοιχα.

pΔ

pΑpΑ–

pΝ

Επειδή τα διανύσματα pΝ  και �p�  είναι κά-
θετα μεταξύ τους, το μέτρο ∆p  της μεταβο-
λής της ορμής του συσσωματώματος κατά την 
κίνησή του από τη θέση Α στη θέση Ν είναι:

�p p p
A N

� �2 2

ή  p M m M m        
2

2

2

ή  �p �10 15 kg m/s  ή  Δp = 38 7, kgm/s .

208.	 α.	 Επειδή το σώμα Σ1 πριν από την 
κρούση κινείται με σταθερή ταχύτητα στο κε-
κλιμένο επίπεδο, έχουμε:
�F

x
� 0   ή  w T

x1 1
=

ή  m g m g
1 1 1
��� � �����   ή  ��� �� 1

ή  ���� � 3
3   

ή  φ = 30°.

β.	 Έστω υ το μέτρο της ταχύτητας του συσ-
σωματώματος αμέσως μετά την κρούση. 

Από το Θ.Μ.Κ.Ε. για την κίνηση του συσσω-
ματώματος από τη χρονική στιγμή αμέσως 
μετά την κρούση μέχρι τη χρονική στιγμή 
στην οποία ακινητοποιείται έχουμε:
� ���� ���� � � �W W W

w T N
  ή

0
1

2
1 2

2

1 2
      m m m m g s 

                                     
2 1 2

0m m g s

ή  υ = 3 m/s.

γ.	 Από την Α.Δ.Ο. στον άξονα xʹx για το σύ-
στημα των δύο σωμάτων κατά την κρούση, 
θεωρώντας θετική τη φορά από τη βάση προς 
την κορυφή του κεκλιμένου επιπέδου, έχουμε: 
 

p p
x x       ΄

ή  m m m m
x2 2 1 1 1 2

     
ή  m m m m

2 2 1 1 1 2
      

ή  υ2 = 50 3 m/s .

δ.	 Το συνολικό ποσό θερμότητας είναι:

Q Q Q�� �� � �

ή  Q W
T�� �� ���� �� ����� � �� � � �� � ΄

ή  Q m m m m       1

2

1

2

1

2
1 1

2

2 2

2

1 2

2

              � �� �� ����
2 1 2

m m g s

ή  Qολ = 768 J.

209.	 α.	 Έστω υ το μέτρο της ταχύτητας του 
συσσωματώματος αμέσως μετά την κρούση. 

Αναλύουμε την ταχύτητα υ0  του βλήματος 
πριν από την κρούση στις συνιστώσες της  


υ
0x

 και υ
0y

,  όπως φαίνεται στο επόμενο σχή-
μα.
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Μ

m

υ0

s

υ0x

υ0y

φ
h

υ

M+m

ΠΡΙΝ

ΜΕΤΑ

φ

Από την Α.Δ.Ο. στον άξονα xʹx για το σύστημα 
των δύο σωμάτων κατά την κρούση έχουμε: 
 

p p
x x       ΄   

ή  m m M
x

 
0
  

ή  m m M  
0

     ή  υ = 2 m/s.

β.	 Έχουμε: � � ��� �� ���� �� ����� �� � � �΄

ή        1

2

1

2
0

2 2
m m

ή  Eαπ = 242 J.

γ.	 Έστω s το διάστημα που διανύει το συσ-
σωμάτωμα στο κεκλιμένο επίπεδο από τη 
χρονική στιγμή t = 0  μέχρι τη χρονική στιγμή 
t = 2 s.  

Από το σχήμα έχουμε: ��� � h

s
  ή  s =14 m.

Το μέτρο της επιτάχυνσης α με την οποία κι-
νείται το συσσωμάτωμα στο κεκλιμένο επίπε-
δο μετά την κρούση προκύπτει:

s t t  
1

2

2   ή  � � 5 m/s
2
.

Από τον θεμελιώδη νόμο της μηχανικής για 
την κίνηση του συσσωματώματος στο κεκλι-
μένο επίπεδο έχουμε: � �F m

x
� �� ��

ή  wx – T = (M + m)α
ή  (M + m)gημφ – μ(Μ + m)gσυνφ = (Μ + m)α
ή  g g    

ή   



 

g
  ή  μ = 0,5.

δ.	 Έστω υ1 το μέτρο της ταχύτητας του συσ-
σωματώματος τη χρονική στιγμή t1. Έχουμε:
  

1 1
  t   ή  

1
7 m/s.

Ο ρυθμός με τον οποίο εκλύεται θερμότητα 
τη χρονική στιγμή t

1
 εξαιτίας της τριβής ολί-

σθησης που ασκείται στο συσσωμάτωμα από  

το κεκλιμένο επίπεδο είναι: dQ

dt
T 

1

ή  dQ

dt
m g    

1

  
ή  dQ
dt

J= 84 /s.
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Α.	Θέµατα πολλαπλής επιλογής

6. α 7. γ 8. β 9. γ 10. α 11. α

12. δ 13. β 14. δ 15. α 16. δ 17. δ

Β.	Θέµατα του τύπου Σωστό/Λάθος

18. α. Σ β. Λ γ. Σ δ. Λ ε. Λ

19. α. Λ β. Σ γ. Λ δ. Λ ε. Σ

20. α. Σ β. Λ γ. Λ δ. Σ ε. Σ

21. α. Λ β. Σ γ. Λ δ. Λ ε. Λ

22. α. Λ β. Λ γ. Σ δ. Λ ε. Σ στ. Σ

23. α. Λ β. Λ γ. Λ δ. Σ ε. Λ

2.1	Οι κινήσεις των στερεών σωµάτων:
Στροφική κίνηση στερεού σώµατος

Κεφάλαιο 2ο: Μηχανική στερεού σώµατος



ΘΕΜΑΤΑ Β

92

24.	 Σωστή επιλογή είναι η α. 
Ισχύει: υ1 = ω1rA  ή  υ1 = αγωνt1rΑ  (1)

και υ2 = ω2rB  ή  υ2 = αγων2t14rΑ

ή  υ2 = 8αγωνt1rΑ  (2).

Με διαίρεση κατά μέλη των σχέσεων (1) και 
(2) προκύπτει: υ2 = 8υ1.

25.	 Σωστή επιλογή είναι η α.

Ισχύει: N
1

1

2
 


  ή  N

t

1

0 1

2




 (1)  και

N
2

2

2
 


  ή  N

t

2

0 1
2

2




  ή  N

t

2

0 1



 (2).

Με διαίρεση κατά μέλη των σχέσεων (1) και 
(2) προκύπτει: Ν2 = 2Ν1.

26.	 Α.	 Σωστή επιλογή είναι η γ.
Το μέτρο της γωνιακής ταχύτητας του δίσκου 
σε συνάρτηση με τον χρόνο δίνεται από τη 
σχέση: ω = ω0 – αγωνt (1).

Από τη σχέση (1) για ω = 0 και t = t1 προκύ-

πτει: 0 = ω0 – αγωνt1  ή  t
1

0



 (2).

Έστω ω το μέτρο της γωνιακής ταχύτητας του 

δίσκου τη χρονική στιγμή t
t

2

1

2
= .  Είναι: 

ω = ω0 – αγωνt2  ή     
0

1

2

t

ή, λόγω της σχέσης (2): 0

2
.ω = ω

Β.	 Σωστή επιλογή είναι η β.

Ισχύει:   1 0 1 1

21

2
 t t ,

ή λόγω της σχέσης (2):  


1

0

2

2
  (3)  και 

  2 0 2 2

21

2
 t t   

ή    2 0

1 1

2

2

1

2 4
 t t

,

ή, λόγω της σχέσης (2):  


2

0

2
3

8
  (4).

Με διαίρεση κατά μέλη των σχέσεων (3) και 

(4) προκύπτει: 





1

2

4

3
   ή  Δθ2 = 0,75Δθ1.

27.	 Α.	 Σωστή επιλογή είναι η β.
Ισχύει: ω1 = αγων(1)t1  (1)  και  ω2 = αγων(2)t1  (2).

Με διαίρεση κατά μέλη των σχέσεων (1) και 

(2) έχουμε: 









1

2

1

2

  

 
  ή  αγων(2) = 2αγων(1)  (3).

Β.	 Σωστή επιλογή είναι η γ.

Ισχύει: 





1

2

1

2

2

2








  ή  






1

2

1

2

 


  ή  



1

2

1 1

2

2 1

2

1

2

1

2


 

 









t

t

 

ή, λόγω της σχέσης (3):  N
N

1

2

1
2

.=

28.	 Α.	 Σωστή επιλογή είναι η α.

Είναι: 











 R

R

2

  ή  2.
υΑ

υΒ
=

Β.	 Σωστή επιλογή είναι η α.

Είναι: 















 

 


2

2

2

R

R
  ή  2.

ακ(Α)

ακ(Β)
=
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29.	 Σωστή επιλογή είναι η α.
Η γωνία στροφής Δθ1 του τροχού Α στο χρονι-
κό διάστημα Δt δίνεται από τη σχέση:
Δθ1 = ωΔt  (1). Η γωνία στροφής Δθ2 του τρο-
χού Β στο ίδιο χρονικό διάστημα δίνεται από 

τη σχέση:   2

21

2
 t  (2).

Επειδή ισχύει:  
 


t

  ή   
  t

,  

η σχέση (2) γράφεται:   
2

1

2
 t  (3).

Με διαίρεση κατά μέλη των σχέσεων (1) και 

(3) προκύπτει: 




1

2

2   ή  Δθ1 = 2Δθ2  (4).

Επομένως, ο ζητούμενος λόγος είναι:







1

2

1

2

2

2








 ή, λόγω της σχέσης (4): 1

2

2.
Ν
Ν =

30. Σωστή επιλογή είναι η γ.
Οι δύο δίσκοι επιβραδύνονται με την ίδια γω-
νιακή επιβράδυνση μέτρου αγων.
Έστω tA η χρονική στιγμή στην οποία ακινητο-
ποιείται ο δίσκος Α.

Ισχύει:  ωΑ = ω0(Α) – αγωνtA  ή  0 = ω0(Α) – αγωνtΑ

ή  t






0( )  (1).

Η γωνία στροφής του δίσκου Α από τη χρονική 
στιγμή t = 0 έως τη χρονική στιγμή tΑ υπολογί-

ζεται από τη σχέση:        0

21

2
A

t t

ή, λόγω της σχέσης (1):  






  0

2

2
(2).

Έστω tΒ η χρονική στιγμή στην οποία ακινητο-
ποιείται ο δίσκος Β. 
Ισχύει: ωΒ = ω0(Β) – αγωνtB

ή  0 = ω0(Β) – αγωνtB  ή  t






0( )  (3).

Η γωνία στροφής του δίσκου Β από τη χρονική 
στιγμή t = 0 έως τη χρονική στιγμή tB υπολο-

γίζεται από τη σχέση:        0

21

2
B

t t

ή, λόγω της σχέσης (3),  






  0

2

2
 (4).

Επομένως, είναι: 



















2

2
ή, λόγω των σχέσεων (2) και (4):

N

N

A

B

A

B












 

 




0

0

2

  ή  






 1

4
  ή  

4
.NA

NB=

31.	 Α.	 Σωστή επιλογή είναι η α.
Το μέτρο ω1 της γωνιακής ταχύτητας του 
στερεού σώματος τη χρονική στιγμή t1 είναι: 
ω1 = αγων(1)t1 (1). Το μέτρο ω2 της γωνιακής τα-
χύτητας του στερεού τη χρονική στιγμή t2 = 3t1 
είναι: ω2 = ω1 – αγων(2)(t2 – t1)

ή   





2 1 1

1

1
2

2 
( )

( )

t t   ή  ω2 = 0.

Β.	 Σωστή επιλογή είναι η β.
Έστω Δθ1 η γωνία στροφής του στερεού σώ-
ματος από τη χρονική στιγμή t = 0 έως τη χρο-

νική στιγμή t1. Είναι  1 1

2

1

1

2


( )
.t

Έστω Δθ2 η γωνία στροφής του στερεού σώ-
ματος από τη χρονική στιγμή t1 έως τη χρονική 
στιγμή t2 = 3t1.

Είναι:   2 1 2 1 2 1

2

2

1

2
   ( ) ( )

( )
t t t t

ή   





2 1 1 1

2

1

1

2
1

2 2
2  

( )

( )

( )t t t

ή   2 1

2

1


( )
.t
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Συνεπώς, η γωνία που διαγράφει το στερεό 
σώμα από τη χρονική στιγμή t = 0  έως τη χρο-
νική στιγμή t2 = 3t1, είναι: Δθ = Δθ1 + Δθ2

ή  1
23

2
t .Δθ2 =    αγων(1)

32.	 Α.	 Σωστή επιλογή είναι η α.

Έστω ω  η γωνιακή ταχύτητα του δίσκου τη 
χρονική στιγμή t1. Τη χρονική στιγμή t1 ο δί-
σκος επιταχύνεται, οπότε το διάνυσμα της 
γωνιακής επιτάχυνσης ( )1

 έχει την ίδια 
φορά με τη γωνιακή του ταχύτητα ω.  Έστω 
   η γωνιακή ταχύτητα του δίσκου τη χρονι-

κή στιγμή t3. Η φορά περιστροφής του δίσκου 
τη χρονική στιγμή t3 είναι η ίδια με τη φορά 
περιστροφής του τη χρονική στιγμή t1. Τη χρο-
νική στιγμή t3 ο δίσκος επιβραδύνεται, οπότε 
το διάνυσμα της γωνιακής του επιτάχυνσης 


( )2
 έχει αντίθετη φορά από το διάνυσμα 

της γωνιακής του ταχύτητας   .  Συνεπώς, τα 
διανύσματα ( )1

 και ( )2
 έχουν αντίθε-

τη φορά.

Β.	 Σωστή επιλογή είναι η γ.

Ισχύει:  
 1  


t

  ή  


 1

1

1

0

2 0
  


t

  

ή  


 1

1

1
2

  
t

 (1).




 2

1

1 1

0

6 2
  


t t

  ή  


 2

1

1
4

   
t

 (2).

Με διαίρεση κατά μέλη των σχέσεων (1) και (2) 

προκύπτει: 







1

2

2
 

 
    ή  

2
.αγων(2) = –

αγων(1)

Γ.	 Σωστή επιλογή είναι η γ.

ω
1

t

ω

t
2
 � 2t

1
t
4
 � 6t

1
0

E
1

E
2

Ισχύει: Δθ1 = Ε1  ή   
1 1 2

1

2
 t

ή  Δθ1 = ω1t1  (1)

και  Δθ2 = Ε2  ή   
2 1 4 2

1

2
 ( )t t

ή  Δθ2 = 2ω1t1 (2).

Από τις σχέσεις (1) και (2) προκύπτει ότι: 

Δθ2 = 2Δθ1.

33.	 Α.	 Σωστή επιλογή είναι η γ.
Τα υλικά σημεία της περιφέρειας των δύο δί-
σκων έχουν κάθε χρονική στιγμή γραμμικές 
ταχύτητες ίσων μέτρων. 

Δηλαδή, ισχύει: υ1 = υ2  ή  
d

dt

d

dt

 
1 2

 ή  αε(1) = αε(2)  ή  αγων(1)R1 = αγων(2)R2 

ή  





2

1

2
 

   (1).

Έστω Δθ1 η γωνία στροφής του δίσκου (1) σε 
χρονικό διάστημα Δt.

Είναι:   1 1

21

2
   t  (2).

Έστω Δθ2 η γωνία στροφής του δίσκου (2) σε 
χρονικό διάστημα Δt.

Είναι:   2 2

21

2
   t  (3).
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Με διαίρεση κατά μέλη των σχέσεων (2) και 

(3) προκύπτει: 











1

2

1

2

  

 
 ή, λόγω της σχέ-

σης (1): 





1

2

2  (4).

Για το πλήθος των περιστροφών Ν1 και Ν2 
που εκτελούν οι δίσκοι (1) και (2) αντίστοιχα 

σε χρονικό διάστημα Δt ισχύει: N
1

1

2
 


 (5) 

και N
2

2

2
 


(6). Με διαίρεση κατά μέλη των 

σχέσεων (5) και (6) προκύπτει: N

N

1

2

1

2

 




 ή, 

λόγω της σχέσης (4): N

N

1

2

2=   ή  N N
2

1

2
= .

Β.	 Σωστή επιλογή είναι η γ.

Είναι:  
 1

1

2

1

  
R

 (7) και  
 2

2

2

2

  
R

 (8). Με 

διαίρεση κατά μέλη των σχέσεων (7) και (8) 

προκύπτει: 










1

2

1

2

2

2

2

1

 

 
 R

R
  ή  








1

2

2
 

 


ή  
2

.ακ(2) =
ακ(1)

Γ.	 Σωστή επιλογή είναι η γ.

Κάθε χρονική στιγμή ισχύει: υ1 = υ2

ή  ω1R1 = ω2R2  ή  


1

2

2

1

 R

R
  ή  


1

2

2

ή  
2

.ω2 = 
ω1
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34.	 α.	 Έστω Δθ η γωνία στροφής του δα-
κτυλίου σε χρονικό διάστημα Δt = 10 s. Είναι: 


 

t
  ή  Δθ = ωΔt  ή  Δθ = 100 rad.

β.	 Έστω Ν το πλήθος των περιστροφών του 
δακτυλίου σε χρονικό διάστημα Δt. Είναι: 

N  
2

  ή  Ν = (50/π) περιστροφές.

γ.	 Έστω υ το μέτρο της γραμμικής ταχύτητας 
ενός υλικού σημείου της περιφέρειας του δα-
κτυλίου. Είναι: υ = ωR  ή  υ = 4 m/s.

δ.	 Έστω s το μήκος του τόξου που διανύει ένα 
υλικό σημείο της περιφέρειας του δακτυλίου 
σε χρονικό διάστημα Δt = 10 s. Είναι: s = RΔθ  
ή  s = 40 m.

35.	 α.	 Το διάνυσμα της γωνιακής ταχύτητας 
του δίσκου έχει τη διεύθυνση του άξονα περι-
στροφής και η φορά του καθορίζεται με τον 
κανόνα του δεξιού χεριού.

zʹ

z

ω

R K

Επειδή ο δίσκος περιστρέφεται αντίθετα από 
τη φορά περιστροφής των δεικτών του ρολο-
γιού, η φορά του διανύσματος της γωνιακής 
του ταχύτητας 

   είναι προς τα πάνω, όπως 
φαίνεται στο σχήμα. 

β.	 Έστω Δθ η γωνία στροφής του δίσκου σε 

χρονικό διάστημα Δt = 40 s. Είναι:   
t

ή  Δθ = ωΔt  ή  Δθ = 200 rad.

Το πλήθος Ν των περιστροφών που εκτελεί ο 
δίσκος σε χρονικό διάστημα Δt = 40 s υπολο-
γίζεται από τη σχέση:

N  
2

  ή  Ν = (100/π) περιστροφές.

γ.	 Έστω r η απόσταση του υλικού σημείου Α 
από τον άξονα περιστροφής του δίσκου. Ισχύει: 

υΑ = ωr  ή  r  

   ή  r = 1 m.

δ.	 Έστω ακ(Β) το μέτρο της κεντρομόλου επι-
τάχυνσης ενός υλικού σημείου Β της περιφέ-
ρειας του δίσκου. Είναι: ακ(Β) = ω2R
ή  ακ(Β) = 50 m/s2.

Επειδή το σημείο Β εκτελεί ομαλή κυκλική κί-
νηση, το μέτρο αΒ της επιτάχυνσής του είναι 
ίσο με το μέτρο της κεντρομόλου επιτάχυνσής 
του. Συνεπώς, ισχύει: αΒ = ακ(Β)  ή  αΒ = 50 m/s2.

36.	 α.	 Έστω υA το μέτρο της γραμμικής τα-
χύτητας του υλικού σημείου A. Είναι:

  s

t
  ή  υA = 10 m/s.

β.	 Έστω ω το μέτρο της γωνιακής ταχύτητας 
του δίσκου. Ισχύει:
υA = ωR (1)  και  ακ(A) = ω2R (2).

Με διαίρεση κατά μέλη των σχέσεων (1) και 

(2) προκύπτει: 
 



 
 1   ή  




  



ή  ω = 20 rad/s.
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γ.	 Από τη σχέση (1) προκύπτει: R  



ή  R = 0,5 m.

δ.	 Έστω Δθ η γωνία στροφής του δίσκου σε 

χρονικό διάστημα Δt = 5 s. Είναι   
t

  ή  

Δθ = ωΔt  ή  Δθ = 100 rad. Έστω Ν το πλήθος 

των περιστροφών που εκτελεί ο δίσκος σε χρο-

νικό διάστημα Δt = 5 s. Είναι: N  
2

ή  Ν = (50/π) περιστροφές.

37.	 α.	 Έστω ω το μέτρο της γωνιακής ταχύ-
τητας του στερεού σώματος. Ισχύει: ω = 2πf  
ή  ω = 10 rad/s. Έστω r η ακτίνα περιστροφής 
του σημείου Β. Είναι: υΒ = ωr  ή  r = 4 m.

β.	 Έστω ακ το μέτρο της κεντρομόλου επιτά-
χυνσης του υλικού σημείου Β.
Είναι: ακ = ω2r  ή  ακ = 400 m/s2.

γ.	 Έστω Δθ η γωνία που διαγράφει το στερεό 
στο χρονικό διάστημα Δt κατά το οποίο έχει 
εκτελέσει Ν = (50/π) περιστροφές. Είναι: 

N  
2

  ή  Δθ = Ν · 2π  ή  Δθ = 100 rad.

Επειδή το στερεό εκτελεί ομαλή στροφική κί-

νηση, ισχύει:   
t

  ή   t  


  ή  Δt = 10 s.

δ.	 Έστω s το μήκος του τόξου που διαγράφει 
το υλικό σημείο Β σε χρονικό διάστημα Δt = 5 s. 
Ισχύει: s = υΒΔt  ή  s = 200 m.

38.	 α.	 Έστω αγων το μέτρο της γωνιακής επι-
τάχυνσης του στερεού σώματος.

Είναι: 
 1

1
t

  ή  αγων = 4 rad/s2.

β.	 Είναι:   1

2
1

2
t   ή  Δθ = 50 rad.

γ.	 Έστω ω2 το μέτρο της γωνιακής ταχύτητας 
του στερεού σώματος τη χρονική στιγμή t2.
Είναι: ω2 = αγωνt2  ή  ω2 = 8 rad/s.
Το μέτρο της γραμμικής ταχύτητας του υλικού 
σημείου Α τη χρονική στιγμή t2 είναι:

υΑ = ω2r  ή  υΑ = 0,8 m/s.

δ.	 Είναι: αε = αγωνr   ή  αε = 0,4 m/s2. 

39.	 α.	 Είναι: d

dt


   ή  αγων = 4 rad/s2. 

Το μέτρο ω1 της γωνιακής ταχύτητας του δί-
σκου τη χρονική στιγμή t1 είναι:
ω1 = ω0 + αγωνt1  ή  ω1= 26 rad/s.

β.	 Έστω Ν το πλήθος των περιστροφών που 
εκτελεί ο δίσκος από τη χρονική στιγμή t = 0 
έως τη χρονική στιγμή t1. Είναι:

  
2

  ή   
 



0 1 1

21

2

2

t t

ή  Ν = (36/π) περιστροφές.

γ.	 Είναι:  
 


t

  ή  Δω = 4 rad/s.

δ.	 Έστω ω2 το μέτρο της γωνιακής ταχύτητας 
του δίσκου τη χρονική στιγμή t2. Είναι:
ω2 = ω0 + αγωνt2  ή  ω2 = 30 rad/s.

Το μέτρο της γραμμικής ταχύτητας ενός υλι-
κού σημείου της περιφέρειας του δίσκου τη 
χρονική στιγμή t2 είναι: υ = ω2R  ή  υ = 6 m/s.

40.	 α.	 Έστω Δθ1 η γωνία περιστροφής του 
τροχού από τη χρονική στιγμή t = 0 έως τη 

χρονική στιγμή t1. Είναι:   


1

2

ή  Δθ1 = Ν2π  ή  Δθ1 = 100 rad.
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Έστω αγων το μέτρο της γωνιακής επιτάχυνσης 
του τροχού. Είναι:  1 1

21

2
 t

ή  αγων = 2 rad/s2.

β.	 Έστω ω1 το μέτρο της γωνιακής ταχύτητας 
του τροχού τη χρονική στιγμή t1. 
Είναι: ω1 = αγωνt1  ή  ω1 = 20 rad/s.

γ.	 Έστω Δθ2 η γωνία στροφής του τροχού από 
τη χρονική στιγμή t = 0 έως τη χρονική στιγμή 

t2 = 9 s. Είναι:  2 2

21

2
 t   ή  Δθ2 = 81 rad.

Έστω Δθ η γωνία στροφής του τροχού στη 
διάρκεια του 10ου δευτερολέπτου. Είναι:

Δθ = Δθ1 – Δθ2  ή  Δθ = 19 rad.

δ.	 Έστω ω2 το μέτρο της γωνιακής ταχύτητας 
του δίσκου τη χρονική στιγμή t2 . Είναι:
ω2 = αγωνt2  ή  ω2 = 18 rad/s.
Το μέτρο της κεντρομόλου επιτάχυνσης ενός 
υλικού σημείου της περιφέρειας του τροχού τη 
χρονική στιγμή t2 υπολογίζεται από τη σχέση:

   2

2
R   ή  ακ = 162 m/s2.

41.	 α.	 Έστω αγων το μέτρο της γωνιακής επι-

βράδυνσης του δίσκου. Eίναι: 


 

t

�

 ή  


 



0

0

0

1
t

  ή  αγων = 2 rad/s2.

β.	 Είναι:    
0 1 1

21

2
t t

ή  Δθ = 100 rad.

γ.	 Είναι:   
2

  ή  Ν = (50/π) περιστροφές.

δ.	 Έστω ω2 το μέτρο της γωνιακής ταχύτητας 
του δίσκου τη χρονική στιγμή t2 =8 s (δύο δευ-
τερόλεπτα πριν ακινητοποιηθεί). Είναι: 
ω2 = ω0 – αγωνt2  ή  ω2 = 4 rad/s.

Το μέτρο της γραμμικής ταχύτητας υ ενός υλι-
κού σημείου της περιφέρειας του δίσκου τη 
χρονική στιγμή t2 υπολογίζεται από τη σχέση:
υ = ω2R  ή  υ = 0,8 m/s.

42.	 α.	 Έστω αγων το μέτρο της γωνιακής επι-
βράδυνσης του τροχού. Τη χρονική στιγμή t1 
το μέτρο της γωνιακής ταχύτητας του τροχού 
είναι ίσο με μηδέν (ω1 = 0). Συνεπώς, ισχύει:
ω1 = ω0 – αγωνt1  ή  0 = ω0 – αγωνt1  

ή  t
1

0



 (1).

Έστω Δθ1 η γωνία στροφής του τροχού από τη 
χρονική στιγμή t = 0 έως της χρονική στιγμή t1. 
Είναι: Δθ1 = Ν2π  ή  Δθ1 = 40 rad. Επειδή ο τρο-
χός εκτελεί ομαλά επιβραδυνόμενη στροφική 

κίνηση, ισχύει:   1 0 1 1

21

2
 t t  ή, λόγω 

της σχέσης (1):  


1

0

2

2
   ή   

 
0

2

1
2

  

ή  αγων = 20 rad/s2.

β.	 Από τη σχέση (1) προκύπτει: t1 = 2 s.

γ.	 Είναι: αε = αγωνR  ή  αε = 16 m/s2.

δ.	 Έστω ω2 το μέτρο της γωνιακής ταχύτητας 

του τροχού τη χρονική στιγμή t
t= 1

2
.  Είναι:

   2 0

1

2
  t

  ή  ω2 = 20 rad/s.

Το μέτρο της κεντρομόλου επιτάχυνσης ενός 

σημείου της περιφέρειας του τροχού υπολογί-
ζεται από τη σχέση:    2

2
R   ή  ακ = 320 m/s2.

Το μέτρο της επιτάχυνσης α ενός υλικού ση-
μείου της περιφέρειας του τροχού τη χρονική 
στιγμή t2 υπολογίζεται από τη σχέση: 

    2 2   ή  α = 102 656 2. m s .
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43. α. Επειδή ο δίσκος περιστρέφεται σύμ-
φωνα με τη φορά περιστροφής των δεικτών 
του ρολογιού, το διάνυσμα της γωνιακής του 
ταχύτητας ω  κάθε χρονική στιγμή, σύμφωνα 
με τον κανόνα του δεξιού χεριού, είναι κατα-
κόρυφο με φορά προς τα κάτω. Αφού ο δίσκος 
εκτελεί ομαλά επιταχυνόμενη στροφική κίνη-
ση το διάνυσμα της γωνιακής του επιτάχυνσης 


  έχει κάθε χρονική στιγμή την ίδια φορά 
με τη γωνιακή του ταχύτητα ω.

zʹ

ω

z

αγων

R

β.	 Το μέτρο της γωνιακής ταχύτητας ω1  του 
δίσκου τη χρονική στιγμή t1 υπολογίζεται από 
τη σχέση: ω1 = αγωνt1  ή  ω1 = 4 rad/s. Έστω υΒ το 
μέτρο της γραμμικής ταχύτητας του σημείου Β 
της περιφέρειας του δίσκου τη χρονική στιγμή 
t1. Είναι: υΒ = ω1R  ή  υΒ = 4 m/s.

γ.	 Έστω Δθ η γωνία στροφής του δίσκου από 
τη χρονική στιγμή t = 0 έως της χρονική στιγ-

μή t1. Ισχύει:   1

2
1

2
t   ή  Δθ = 2 rad.

δ.	 Έστω αε το μέτρο της επιτρόχιας επιτάχυν-
σης του σημείου Β. Είναι: αε = αγωνR
ή  αε = 4 m/s2.

Έστω ακ το μέτρο της κεντρομόλου επιτάχυν-

σης του σημείου Β τη χρονική στιγμή t1. Είναι: 

   1

2
R   ή  ακ = 16 m/s2. Έστω α το μέτρο 

της επιτάχυνσης του σημείου Β τη χρονική 

στιγμή t1. Είναι:     2 2

ή  α = 272 2m s .

44.	 α.	 Έστω Δθ1 η γωνία που διαγράφει ο 
τροχός από τη χρονική στιγμή t = 0 έως τη 

χρονική στιγμή t1. Είναι: N  


1

2
  

ή  Δθ1 = Ν · 2π  ή  Δθ1 = 1.600 rad.

Η χρονική στιγμή t1 υπολογίζεται από τη σχέ-

ση:  1 1

21

2
 t   ή  t

1

1
2 


ή  t1 = 20 s.

Έστω ω1 το μέτρο της γωνιακής ταχύτητας του 
τροχού τη χρονική στιγμή t1. Είναι: ω1 = αγωνt1  
ή  ω1 = 160 rad/s.

β.	 Έστω ακ το μέτρο της κεντρομόλου επιτά-
χυνσης του σημείου Β τη χρονική στιγμή t1. 
Είναι:    1

2
R  ή  ακ = 5.120 m/s2.

γ.	 Έστω ω2 το μέτρο της γωνιακής ταχύτητας 
του σημείου Β τη χρονική στιγμή t2. Είναι:
υΒ = ω2R  ή  ω2 = 200 rad/s. Είναι:
ω2 = αγωνt2  ή  t2 = 25 s.

δ.	 Έστω Δθ2 η γωνία στροφής του τροχού στο 
χρονικό διάστημα Δt, από τη χρονική στιγμή  
t1 έως τη χρονική στιγμή t2.  Είναι: 

    2 1

21

2
 t t( )

ή    2 1 2 1 2 1

21

2
     t t t t

ή   Δθ2 = 900 rad.

Το μήκος s του τόξου που διανύει το σημείο Β 
από τη χρονική στιγμή t1 έως τη χρονική στιγ-
μή t2 υπολογίζεται από τον τύπο: s = RΔθ2

ή  s = 180 m.
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45.	 α.	 Έστω αγων το μέτρο της γωνιακής επι-
τάχυνσης του δίσκου. Είναι: ω1 = ω0 + αγωνt1

ή    
 


1 0

1
t

  ή  αγων = 4 rad/s2.

β.	 Έστω Δθ1 η γωνία στροφής του δίσκου από 
τη χρονική στιγμή t = 0 έως τη χρονική στιγμή 

t1. Είναι:   1 0 1 1

21

2
 t t

ή  Δθ1 = 100 rad.

Το πλήθος Ν των περιστροφών που εκτελεί 
ο δίσκος από τη χρονική στιγμή t = 0 έως τη 
χρονική στιγμή t1 υπολογίζεται από τη σχέση:

N  


1

2
  ή  Ν = (50/π) περιστροφές.

γ.	 Έστω   το μέτρο της γωνιακής ταχύτητας 
του δίσκου τη χρονική στιγμή  t s3 .  Είναι: 

    0
t   ή    22 rad s.  

Η γωνία στροφής    του δίσκου στη χρονική 
διάρκεια Δt του 4ου δευτερολέπτου της κίνη-
σής του t s   4 3  υπολογίζεται από τη 

σχέση:       t t
1

2

2
( )

 ή  Δθ′ = 24 rad.

δ.	 Έστω ω2 το μέτρο της γωνιακής ταχύτητας 
του δίσκου τη χρονική στιγμή t2 = 10 s. 
Είναι: ω2 = ω0 + αγωνt2  ή  ω2 = 50 rad/s. Έστω 
ακ το μέτρο της κεντρομόλου επιτάχυνσης του 
σημείου Β τη χρονική στιγμή t2. Είναι:
   2

2
R   ή  ακ = 2.500 m/s2.

Το μέτρο της κεντρομόλου δύναμης που 
ασκείται στο υλικό σημείο Β τη χρονική στιγ-
μή t2 υπολογίζεται από τη σχέση: Fκ = mακ 
ή  Fκ = 2,5 Ν.

46.	 α.	 Το διάνυσμα της γωνιακής ταχύτητας 


ω  του δακτυλίου μια τυχαία χρονική στιγμή 
t πριν ακινητοποιηθεί έχει τη διεύθυνση του 
άξονα περιστροφής και φορά προς τα πάνω 
(σύμφωνα με τον κανόνα του δεξιού χεριού). 
Επειδή ο δακτύλιος επιβραδύνεται, το διάνυ-
σμα της γωνιακής του επιβράδυνσης   έχει 
κάθε χρονική στιγμή, για όσο χρόνο διαρκεί 
η επιβραδυνόμενη κίνηση, αντίθετη φορά από 
το διάνυσμα της γωνιακής του ταχύτητας.

zʹ

z

R

ω

αγων

Το μέτρο της γωνιακής επιβράδυνσης του δα-
κτυλίου είναι: ω = ω0 – αγωνt

ή  
 

 


0

t
 (1).

Από τη σχέση (1) για t = t1 = 4 s και ω = 0 
προκύπτει: αγων = 5 rad/s2.

β.	 Έστω Δθ1 η γωνία στροφής του δακτυλίου 
από τη χρονική στιγμή t = 0 έως τη χρονική 

στιγμή t1. Είναι:   1 0 1 1

21

2
 t t

ή  Δθ1 = 40 rad.

Το πλήθος Ν των περιστροφών που εκτελεί ο 
δακτύλιος από τη χρονική στιγμή t = 0 έως τη 
χρονική στιγμή t1 υπολογίζεται από τη σχέση: 

N  


1

2
  ή  Ν = (20/π) περιστροφές.

γ.	 Έστω    το μέτρο της γωνιακής ταχύτη-
τας του δακτυλίου τη χρονική στιγμή t′ = 2 s. 
Είναι:      0

t   ή    10 rad s.
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Το μέτρο της γραμμικής ταχύτητας υΒ του υλι-
κού σημείου Β τη χρονική στιγμή t′ = 2 s υπο-
λογίζεται από τη σχέση:  

B
R 

ή  υΒ = 2 m/s.

Η κινητική ενέργεια του υλικού σημείου Β τη 
χρονική στιγμή t′ = 2 s υπολογίζεται από τη 

σχέση: K m
B
 1

2

2   ή  KB = 2 · 10–4 J.

δ.	 Έστω Δθ2 η γωνία στροφής του δακτυλίου 
από τη χρονική στιγμή t′ = 2 s έως τη χρονική 
στιγμή t1. Είναι:

  2 1 1

21

2
     ( ) ( )t t t t

ή  Δθ2 = 10 rad. 

Το μήκος του τόξου s που διανύει το σημείο Β 
από τη χρονική στιγμή t′ = 2 s έως τη χρονική 
στιγμή t1 υπολογίζεται από τη σχέση: s = RΔθ2  
ή  s = 2 m.

47.	 α.	 Το μέτρο της γωνιακής ταχύτητας του 
δίσκου μεταβάλλεται σε συνάρτηση με τον 
χρόνο σύμφωνα με τη σχέση:

ω = ω0 – αγωνt (1).

Από τη σχέση (1) για t = t1 και ω = 0 προκύ-
πτει: 0 = ω0 – αγωνt1  ή  ω0 = αγωνt1 (2).

Η γωνία στροφής του δίσκου από τη χρονική 
στιγμή t = 0 έως τη χρονική στιγμή t1 υπολογί-

ζεται από τη σχέση:    
0 1 1

21

2
t t  

ή, λόγω της σχέσης (1): �� �����
1

2
1

2
t

ή  t
1

2
�

��
����

  ή  t1 = 10 s. 

Από τη σχέση (2) για t1 = 10 s προκύπτει:
ω0 = 20 rad/s.

β.	 Έστω ω1 το μέτρο της γωνιακής ταχύτητας 
του δίσκου τη χρονική στιγμή t2. Είναι:

ω1 = ω0 – αγωνt2  ή  ω1 = 16 rad/s.

Το μέτρο ακ(Β) της κεντρομόλου επιτάχυνσης 
του υλικού σημείου Β τη χρονική στιγμή t2 

υπολογίζεται από τη σχέση:      1

2
R

ή  ακ(Β) = 128 m/s2.

γ.	 Έστω ω2 το μέτρο της γωνιακής ταχύτητας 
του δίσκου τη χρονική στιγμή t3 στην οποία 
το μέτρο της κεντρομόλου επιτάχυνσης του 
υλικού σημείου Ζ είναι ακ(Ζ) = 40 m/s2. Είναι: 

     2

2
r   ή  


2
  

r
  ή  ω2 = 10 rad/s.

Έστω υΖ το μέτρο της γραμμικής ταχύτητας 
του σημείου Ζ τη χρονική στιγμή t3. Είναι:

υΖ = ω2r  ή  υΖ = 4 m/s.

δ.	 Η χρονική στιγμή t3 υπολογίζεται από τη 

σχέση: ω2 = ω0 – αγωνt3  ή  t
3

0 2
 



ή  t3 = 5 s.

Έστω    η γωνία στροφής του δίσκου στο 
χρονικό διάστημα Δt, από τη χρονική στιγμή 
t2 έως τη χρονική στιγμή t3 (Δt = t3 – t2). Είναι: 

      1

21

2
t t   ή     39 rad.

Το μήκος του τόξου που διανύει το υλικό ση-
μείο Ζ από τη χρονική στιγμή t2 έως τη χρονι-
κή στιγμή t3 υπολογίζεται από τη σχέση:
s r    ή  s = 15,6 m.
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48.	 α.	 Έστω Δθ η γωνία στροφής της τροχα-
λίας από τη χρονική στιγμή t = 0  έως τη χρο-
νική στιγμή t1. 

Είναι:   
2

  ή  Δθ = Ν2π  ή  Δθ = 100 rad.

Επειδή η τροχαλία εκτελεί ομαλά επιταχυνό-
μενη στροφική κίνηση, ισχύουν: 

  1

2
1

2
t   και  ω1 = αγωνt1 (2).

Με επίλυση του συστήματος των εξισώσεων 
(1) και (2) προκύπτουν:

αγων = 2 rad/s2  και  t1 = 10 s.

β. Έστω υΑ το μέτρο της ταχύτητας του άκρου 
Α του νήματος τη χρονική στιγμή t1 και υ το 
μέτρο της γραμμικής ταχύτητας του ανώτερου 
σημείου της τροχαλίας την ίδια χρονική στιγ-
μή. Είναι: υΑ = υ  ή  υΑ = ω1R  ή  υΑ = 4 m/s.

γ. αΑ = αε  ή  αΑ = αγωνR  ή  αΑ = 0,4 m/s2.

δ.	 Η μετατόπιση του άκρου Α του νήματος 
από τη χρονική στιγμή t = 0 έως τη χρονική 
στιγμή t1 υπολογίζεται από τη σχέση:

x t
A A
 1

2
1

2   ή  ΔxA = 20 m.

Το μήκος   του νήματος που ξετυλίγεται από 
τη χρονική στιγμή t = 0 έως τη χρονική στιγμή 
t1 υπολογίζεται από τον τύπο:   R

ή  ��  20 m.

ε.	 Έστω ω2 το μέτρο της γωνιακής ταχύτητας 
του δίσκου τη χρονική στιγμή t2. Είναι: 
ω2 = αγωνt2  ή  ω2 = 2 rad/s.

Έστω ακ(Ζ) το μέτρο της κεντρομόλου επιτά-
χυνσης του σημείου Ζ τη χρονική στιγμή t2. 
Είναι:   ( ) 

2

2
R   ή  ακ(Ζ) = 0,8 m/s2. Το μέ-

τρο της επιτρόχιας επιτάχυνσης του σημείου Ζ 

είναι αε(Ζ) = αγωνR  ή  αε(Ζ) = 0,4 m/s2. Το μέτρο 
αΖ της επιτάχυνσης του σημείου Ζ τη χρονική 
στιγμή t2 υπολογίζεται από τη σχέση:

      
( ) ( )

2 2   ή  0 8 2m sαΖ = .

49.	 α.  Έστω Δθ1 η γωνία στροφής του τροχού 
από τη χρονική στιγμή t = 0 έως τη χρονική 
στιγμή t1 στην οποία ακινητοποιείται. Έχουμε:

�
�

�
�

�
1

2
  ή  Δθ1 = Ν2π  ή  Δθ1 = 20 rad.

Το μέτρο της γωνιακής ταχύτητας του τροχού 
μεταβάλλεται σε συνάρτηση με τον χρόνο 
σύμφωνα με τη σχέση: � � ����� �

0
t  (1).

Από τη σχέση (1) για t = t1 και ω = 0 προκύ-

πτει: 0
0 1

� �� ����t   ή  t
1

0�
�

����

 (2).

Η γωνία στροφής του τροχού από τη χρονική 
στιγμή t = 0 έως τη χρονική στιγμή t1 υπολογί-

ζεται από τη σχέση: � � �� � ����1 0

21

2
� �t t( )  

ή  �� � ����1 0 1 1

2
0

1

2
0� � � �( ) ( )t t  

ή  �� � ����1 0 1 1

21

2
� �t t  ή, λόγω της σχέσης (2): 

��
�

����
1

0

2

2
�   ή  � �

���� �
0

2

1
2�

ή  αγων = 2,5 rad/s2.

β. Από τη σχέση (2) για αγων = 2,5 rad/s2 προ-
κύπτει: t1 = 4 s.

γ. Έχουμε: � � �� � ����� �
0

21

2
t t( )  

ή  �� � ����� � � �
0 2 2

2
0

1

2
0( ) ( )t t  

ή  �� � ����� �
0 2 2

21

2
t t  

ή  15 10 1 25
2 2

2� �t t,  (S.I.)

ή  1 25 10 15 0
2

2

2
, t t� � �  (S.I.) (3).
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Οι λύσεις της εξίσωσης (3) είναι: t2 = 2 s
ή  t2 = 6 s.
Επειδή τη χρονική στιγμή t2 ο τροχός δεν έχει 
ακινητοποιηθεί, δεκτή λύση είναι η: t2 = 2 s.
Έστω ω1 το μέτρο της γωνιακής ταχύτητας του 
τροχού τη χρονική στιγμή t2. Είναι:
� � ����1 0 2
� � t   ή  ω1 = 5 rad/s.

δ. Το μέτρο της κεντρομόλου επιτάχυνσης 
ενός υλικού σημείου της περιφέρειας του τρο-
χού τη χρονική στιγμή t2 υπολογίζεται από τη 

σχέση: � �
� �

2

R
  ή  � �

� �
( )

1

2
R

R
  ή  � �� � 1

2
R  

ή  ακ = 12,5 m/s2.

50.	 α.	 Η γωνιακή επιτάχυνση του στερεού 

σώματος παραμένει σταθερή σε όλη τη διάρ-

κεια της κίνησής του. Είναι: 
 


t

�

ή   



20 5

3 0

2
rad s   ή  αγων = 5 rad/s2.

β. N = (30/π) περιστροφές.

γ. Δθ = 12,5 rad.

δ. Από το διάγραμμα της εκφώνησης προκύ-
πτει ότι η γωνιακή ταχύτητα του στερεού σώ-
ματος τη χρονική στιγμή t3 είναι ω = 20 rad/s. 

Ο ζητούμενος λόγος είναι: 










r

r




2

ή  









 2   ή  1
80

.
αε
ακ

51. α. Επειδή ο δίσκος εκτελεί ομαλά επιβρα-
δυνόμενη στροφική κίνηση, το μέτρο του ρυθ-
μού μεταβολής της γωνιακής του ταχύτητας 

είναι σταθερό. Επομένως, είναι: d

dt t

� �
�
�
�

 

ή  d

dt t t

� � ���� ���

��� ���

�
�
�

  ή  d

dt

rad s

s

�
�

�
�

( )

( )

0 20

5 0

/  

ή  d
dt

rad s4 2/ω .

β. Έστω αγων το μέτρο της γωνιακής επιβρά-
δυνσης του δίσκου. Το μέτρο της γωνιακής 
επιβράδυνσης του δίσκου είναι ίσο με το μέ-
τρο του ρυθμού μεταβολής της γωνιακής του 

ταχύτητας. Δηλαδή, είναι: � �
��� �

d

dt
 

ή  αγων = 4 rad/s2.

Από το δοθέν διάγραμμα προκύπτει ότι το 
μέτρο της γωνιακής ταχύτητας του δίσκου τη 
χρονική στιγμή t = 0 είναι: ω0 = 20 rad/s.
Έστω ω1 το μέτρο της γωνιακής ταχύτητας του 
δίσκου τη χρονική στιγμή t1. Έχουμε:
� � ����1 0
� � �t   ή  � � ����1 0 1

� � t  

ή  ω1 = 12 rad/s.

γ. Έστω Δθ η γωνία στροφής του δίσκου από 
τη χρονική στιγμή t = 0 έως τη χρονική στιγμή 

t2. Είναι: � � �� � ����� �
0

21

2
t t( )  

ή  �� � ����� �
0 2 2

21

2
t t   ή  Δθ = 50 rad. 

Το πλήθος των περιστροφών που εκτελεί ο δί-
σκος από τη χρονική στιγμή t = 0 έως τη χρονι-
κή στιγμή t2 υπολογίζεται από τη σχέση:

�
�

�
�

�2
  ή  Ν = (25/π) περιστροφές.

δ. Το μέτρο της επιτρόχιας επιτάχυνσης ενός 
υλικού σημείου της περιφέρειας του δίσκου 
υπολογίζεται από τη σχέση: αε = αγωνR
ή  αε = 2 m/s2.



Απαντήσεις – Λύσεις θεµάτων

104

52. α. Επειδή η στροφική κίνηση που εκτελεί 
ο δίσκος είναι ομαλά επιβραδυνόμενη, το διά-
νυσμα της γωνιακής του επιβράδυνσης �αγων 
τη χρονική στιγμή t1 έχει αντίθετη φορά από 
το διάνυσμα της γωνιακής του ταχύτητας 
�ω1 την ίδια χρονική στιγμή.

zʹ

ω
1

z

αγων

R

Επειδή ο δίσκος εκτελεί ομαλά επιβραδυνόμε-
νη κίνηση, το μέτρο της γωνιακής του επιβρά-
δυνσης (αγων) είναι σταθερό. Έχουμε:

����

�
�
�
�t

  ή  ���� �
�
�

( )

( )

0 20

5 0

rad s

s

/
 

ή  αγων = 4 rad/s2.

β. Το μέτρο της γωνιακής ταχύτητας του δί-
σκου τη χρονική στιγμή t1 υπολογίζεται από 
τη σχέση: � � ����1 0

� � �t   ή  � � ����1 0 1
� � t  

ή  ω1 = 8 rad/s.

γ. Έστω ακ το μέτρο της κεντρομόλου επιτά-
χυνσης ενός υλικού σημείου Β της περιφέρει-
ας του δίσκου τη χρονική στιγμή t1. Έχουμε: 
� �� � 1

2
R   ή  ακ = 32 m/s2.

Έστω αε το μέτρο της επιτρόχιας επιτάχυνσης 
του σημείου Β. Έχουμε: αε = αγωνR
ή  αε = 2 m/s2.

Η επιτάχυνση α  του υλικού σημείου Β τη 
χρονική στιγμή t1 δίνεται από τη σχέση:
  

� � �� �� � .  

Επειδή τα διανύσματα ��  και ��  είναι κάθετα 
μεταξύ τους, το μέτρο της επιτάχυνσης του ση-
μείου Β τη χρονική στιγμή t1 υπολογίζεται από 

τη σχέση: � � �� �� �2 2    ή  1.028 2m s/ .α =  

δ. Έστω Δθ1 η γωνία στροφής του δίσκου από 
τη χρονική στιγμή t = 0 έως τη χρονική στιγμή 

t1. Έχουμε: � � �� � ����1 0

21

2
� �t t( )  

ή  �� � ����1 0 1 1

21

2
� �t t   ή  Δθ1 = 42 rad.

Έστω Δθ2 η γωνία στροφής του δίσκου από τη 
χρονική στιγμή t = 0 έως τη χρονική στιγμή 

t2 = 4 s. Έχουμε: � � �� � ����2 0

21

2
� �t t( )  

ή  �� � ����2 0 2 2

21

2
� �t t    ή  Δθ2 = 48 rad.

Η γωνία στροφής Δθ του δίσκου στη χρονική 
διάρκεια του 4ου δευτερολέπτου της κίνησής 
του είναι: � � �� � �� �

2 1
  ή  Δθ = 6 rad.

53. α. Η στροφική κίνηση που εκτελεί ο 
δακτύλιος τη χρονική στιγμή t1 είναι ομαλά 
επιταχυνόμενη. Επομένως, το διάνυσμα της 
γωνιακής επιτάχυνσης του δακτυλίου ����( )1

 
τη χρονική στιγμή t1 έχει την ίδια φορά με το 
διάνυσμα της γωνιακής του ταχύτητας ω1  την 
ίδια χρονική στιγμή.

zʹ

z

t
1

RΚ

ω
1

αγων(1)

Η στροφική κίνηση που εκτελεί ο δακτύλιος 
τη χρονική στιγμή t2 είναι ομαλά επιβραδυνό-
μενη. Επομένως, το διάνυσμα της γωνιακής 



2.1 Οι κινήσεις των στερεών σωµάτων: Στροφική κίνηση στερεού σώµατος

105

επιτάχυνσης (επιβράδυνσης) του δακτυλίου 


����( )2
 τη χρονική στιγμή t2 έχει αντίθετη 

φορά από το διάυνσμα της γωνιακής του ταχύ-
τητας ω2  την ίδια χρονική στιγμή.

zʹ

z

t
2

RΚ

ω
2

αγων(2)

Το μέτρο της γωνιακής επιτάχυνσης ����( )1
 του 

δακτυλίου από τη χρονική στιγμή t = 0 έως τη 
χρονική στιγμή � �t s2  παραμένει σταθερό. 

Είναι: � �
���( )1

�
�
�t

   ή  ����( )1

216 8

2 0
�

�
�

rad s/  

ή  αγων(1) = 4 rad/s2.

Το μέτρο της γωνιακής επιτάχυνσης (επιβρά-
δυνσης) ����( )2

 του δακτυλίου από τη χρονική 
στιγμή � �t s2  έως τη χρονική στιγμή t3 = 10 s 

παραμένει σταθερό. Είναι: �
�

���( )2
�
�
�t

 

ή  ����( )2

2
0 16

10 2
�

�
�

rad s/   ή  αγων(2) = 2 rad/s2.

β. Από το δοθέν διάγραμμα προκύπτει ότι το 
μέτρο της γωνιακής ταχύτητας του δακτυλίου 
τη χρονική στιγμή t = 0 είναι ω0 = 8 rad/s.
Έστω Δθ1 η γωνία στροφής του δακτυλίου στο 
χρονικό διάστημα Δt1, από τη χρονική στιγμή 
t = 0 έως τη χρονική στιγμή � �t s2 .  Είναι:

� � �� � ����1 0 1 1 1

21

2
� �t t

( )
( )    ή  Δθ1 = 24 rad.

Από το δοθέν διάγραμμα προκύπτει ότι η 
γωνιακή ταχύτητα του δακτυλίου τη χρονική 
στιγμή � �t s2  είναι � �� 16 rad s/ .  

Έστω Δθ2 η γωνία στροφής του δακτυλίου στο 
χρονικό διάστημα Δt2, από τη χρονική στιγμή 
� �t s2  έως τη χρονική στιγμή t3 = 10 s. Είναι:

� � �� � ����2 2 2 2

21

2
� �� t t

( )
( )    ή  Δθ2 = 64 rad.

Επομένως, η γωνία στροφής του δακτυλίου 
από τη χρονική στιγμή t = 0 έως τη χρονική 
στιγμή t3 είναι: Δθ = Δθ1 + Δθ2  ή  Δθ = 88 rad.

γ. Το μέτρο ω2 της γωνιακής ταχύτητας του 
δακτυλίου τη χρονική στιγμή t2 υπολογίζεται 
από τη σχέση: � � ����2 2

� � ��
( )
�t  

ή  � � ����2 2 2
� � � ��

( )
( )t t   ή  ω2 = 12 rad/s. 

Έστω υ το μέτρο της γραμμικής ταχύτητας 
ενός υλικού σημείου της περιφέρειας του δα-
κτυλίου τη χρονική στιγμή t2. Είναι:
υ = ω2R  ή  υ = 2,4 m/s.

δ. Έστω ω3 το μέτρο της γωνιακής ταχύτητας 
του δακτυλίου τις χρονικές στιγμές στις οποίες 
το μέτρο της κεντρομόλου επιτάχυνσης ενός 
υλικού σημείου της περιφέρειας του δακτυλί-
ου είναι: ακ = 20 m/s2. Έχουμε: � �� � 3

2
R  

ή  ω3 = 10 rad/s.
Έστω t4 ( )0

4
� � �t t  η χρονική στιγμή στην 

οποία το μέτρο της γωνιακής ταχύτητας του 
δακτυλίου γίνεται για πρώτη φορά ίσο με ω3. 
Έχουμε: � � ����3 0 1 4

0� � �
( )

( )t

ή  ω3 = ω0 + αγων(1)t4  ή  t
4

3 0

1

�
�� �

����( )

ή  t4 = 0,5 s.

Έστω t5 ( )� � �t t t
5 3

 η χρονική στιγμή στην 
οποία το μέτρο της γωνιακής ταχύτητας του 
δακτυλίου γίνεται για δεύτερη φορά ίσο με ω3. 
Έχουμε: � � ����3 2 5

� � � ��
( )

( )t t

ή  t t
5

3

2

� � �
��� �

����( )

  ή  t5 = 5 s.
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54.	 α.	 Έστω ω1 και ω2 τα μέτρα της γωνια-
κής ταχύτητας της ράβδου τις χρονικές στιγ-
μές t1 και t2 αντίστοιχα. Είναι: υΑ = ω1x
ή  ω1 = 16 rad/s  και
υΒ = ω2 (L –x)  ή  ω2 = 20 rad/s.

β.	 Έστω αγων το μέτρο της γωνιακής επιτάχυν-

σης της ράβδου. Είναι:  
 


t

�

ή  
 

 



2 1

2 1
t t

  ή  t t
2 1

2 1   


 (1).

Η γωνία στροφής Δθ της ράβδου από τη χρο-
νική στιγμή t1 έως τη χρονική στιγμή t2 είναι: 

  
2

  ή  Δθ = Ν2π  ή  Δθ = 40 rad.

Ισχύει:        1 2 1 2 1

21

2
t t t t

ή, λόγω της σχέσης (1):


  



 

 


 


 1 2 1 2 1

2

1

2

ή  αγων = 1,8 rad/s2.

γ.	 Είναι: ω1 = ω0 + αγωνt1  ή  ω0 = 7 rad/s.

δ.	 Είναι: 














 

 
 2

2

2

2

r

r

A

B

  ή  











 

 



x

L x

ή  1
3

.
ακ(Α)

ακ(Β)

55.	 α.	 Έστω αγων(2) το μέτρο της γωνιακής 
επιβράδυνσης του στερεού σώματος. Είναι 




( )2


d

dt
  ή  αγων(2) = 6 rad/s2. Έστω ω1 το 

μέτρο της γωνιακής ταχύτητας του στερεού 
σώματος τη χρονική στιγμή t1.

Στη διάρκεια της επιβραδυνόμενης κίνησης 
ισχύει:       1 2 2 1

t t   

ή  0
1 2 2 1

      t t   ή  ω1 = 30 rad/s.

β.	 Έστω Δθ2 η γωνία στροφής του στερεού 
σώματος από τη χρονική στιγμή t1 έως τη χρο-
νική στιγμή t2. Ισχύει:

  2 1 2 1 2 2 1

21

2
    ( ) ( )t t t t

ή  Δθ2 = 75 rad.

Συνεπώς, είναι:   
2

ή  Ν = (37,5/π) περιστροφές.

γ.	 Έστω Δθ1 η γωνία στροφής του στερεού 
σώματος από τη χρονική στιγμή t = 0 έως τη 

χρονική στιγμή t1. Είναι:   


1

2

ή  Δθ1 = Ν2π  ή  Δθ1 = 60 rad.

Ισχύει:  1 1 1

21

2
  t  (1)

και  ω1 = αγων(1)t1 (2).

Με διαίρεση κατά μέλη των σχέσεων (1) και 

(2) προκύπτει: 



1

1

1

2
 t

  ή  t1 = 4 s.

Συνεπώς από τη σχέση (2) προκύπτει:
αγων(1) = 7,5 rad/s2.

δ. 

      
0 4

30

t(s)

ω(rad/s)

9
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56.	 α.	 Έστω ω0 το μέτρο της γωνιακής τα-
χύτητας του δίσκου τη χρονική στιγμή t = 0. 
Είναι: ω0 = 2πf0  ή  ω0 = 20 rad/s.
Έστω ω1 το μέτρο της γωνιακής ταχύτητας του 
δίσκου τη χρονική στιγμή t1.
Είναι: ω1 = ω0 + αγωνt1  ή  ω1 = 40 rad/s.

β.	 H γωνία στροφής Δθ1 του δίσκου από τη 
χρονική στιγμή t = 0 έως τη χρονική στιγμή t1 

είναι:   1 0 1 1

21

2
 t t   ή  Δθ1 = 150 rad.

Το πλήθος των περιστροφών που εκτελεί ο δί-
σκος από τη χρονική στιγμή t = 0 έως τη χρο-

νική στιγμή t1 είναι: N
1

1

2
 


ή  Ν1 = (75/π) περιστροφές.

γ.	 Το πλήθος των περιστροφών που εκτελεί ο 
δίσκος από τη χρονική στιγμή t1 έως τη χρονι-
κή στιγμή t2 είναι: N2 = N – N1 
ή  Ν2 = (20/π) περιστροφές.
Επομένως, η γωνία στροφής του δίσκου Δθ2 
από τη χρονική στιγμή t1 έως τη χρονική στιγ-
μή t2 είναι: Δθ2 = Ν22π  ή  Δθ2 = 40 rad.
Έστω αγων(2) το μέτρο της γωνιακής επιβράδυν-
σης του δίσκου. Επειδή ο δίσκος εκτελεί ομα-
λά επιβραδυνόμενη κίνηση από τη χρονική 
στιγμή t1 έως τη χρονική στιγμή t2 στην οποία 
ακινητοποιείται ισχύουν: 

ω = ω1 – αγων(2) (t2 – t1)  ή  

0 = ω1 – αγων(2) (t2 – t1)   ή  t t
2 1

1

2

 
 




 (1) 

και   2 1 2 1 2 2 1

21

2
   ( ) ( )

( )
t t t t

ή, λόγω της σχέσης (1): 

 


2

1

2

2

1

2


( )

  ή  αγων(2) = 20 rad/s2.

δ. Έστω ω2 το μέτρο της γωνιακής ταχύτητας 
του δίσκου τις χρονικές στιγμές στις οποίες το 
μέτρο της κεντρομόλου επιτάχυνσης ενός υλι-
κού σημείου της περιφέρειας του δίσκου είναι:
ακ = 360 m/s2. Έχουμε: � �� � 2

2
R  

ή  ω2 = 30 rad/s.

Έστω t3 ( )0
3 1

< <t t  η χρονική στιγμή στην 
οποία το μέτρο της γωνιακής ταχύτητας του 
δίσκου γίνεται για πρώτη φορά ίσο με ω2. 
Έχουμε: � � ����2 0 1 3

0� � �
( )

( )t

ή  ω2 = ω0 + αγων(1)t3  ή  t
3

2 0

1

�
�� �

����( )

ή  t3 = 2,5 s.

Έστω t4 ( )t t t
1 4 2
< <  η χρονική στιγμή στην 

οποία το μέτρο της γωνιακής ταχύτητας του 
δίσκου γίνεται για δεύτερη φορά ίσο με ω2. 
Έχουμε: � � ����2 1 2 4 1

� � �
( )

( )t t

ή  t t
4 1

1 2

2

� �
�� �

����( )

  ή  t4 = 5,5 s.

57. α. Έστω αγων(1) η γωνιακή επιτάχυνση της 
ράβδου. Είναι: ω1 = αγων(1)t1  ή  αγων(1) = 1 rad/s2.

β.	 Έστω Δθ1 η γωνία στροφής της ράβδου 
από τη χρονική στιγμή t = 0 έως τη χρονική 

στιγμή t1. Είναι:  1 1 1

21

2
  t

ή  Δθ1 = 200 rad.

Το πλήθος των περιστροφών που εκτελεί η 
ράβδος από τη χρονική στιγμή t = 0 έως τη 
χρονική στιγμή t1 είναι:

 
1

1

2
 


  ή  Ν1 = (100/π) περιστροφές.

γ.	 Έστω Δθ2 η γωνία στροφής της ράβδου 
από τη χρονική στιγμή t1 έως τη χρονική στιγ-
μή t2.  Είναι:  Δθ2 = Ν2π  ή  Δθ2 = 100 rad.
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Έστω αγων(2) το μέτρο της γωνιακής επιβράδυν-
σης της ράβδου. Επειδή η κίνηση της ράβδου 
από τη χρονική στιγμή t1 έως τη χρονική στιγ-
μή t2 στην οποία ακινητοποιείται (ω = 0) είναι 
ομαλά επιβραδυνόμενη, ισχύουν: 
ω = ω1 – αγων(2) (t2 – t1)

 ή  0 = ω1 – αγων(2) (t2 – t1) 

ή t t
2 1

1

2

  
( )

 (1)

και   2 1 2 1 2 1

21

2
   ( ) ( )t t t t  

ή, λόγω της σχέσης (1):

 


2

1

2

2

1

2


( )

  ή   
( )2

1

2

2
2




  

ή  αγων(2) = 2 rad/s2.

Από τη σχέση (1) προκύπτει: t2 = 30 s.

δ.

0 20

20

t(s)

ω(rad/s)

30

ε.	 Έστω ω2 το μέτρο της γωνιακής ταχύτητας 
της ράβδου τη χρονική στιγμή t3 = 25 s. Είναι: 
ω2 = ω1 – αγων(2) (t3 – t1)   ή  ω2 = 10 rad/s. 

Το μέτρο της γραμμικής ταχύτητας υ1 του σώ-
ματος Σ1 τη χρονική στιγμή t3 υπολογίζεται 
από τη σχέση: υ1 = ω2d  ή  υ1 = 10 m/s.
Tο μέτρο της γραμμικής ταχύτητας υ2 του σώ-
ματος Σ2 την ίδια χρονική στιγμή υπολογίζεται 
από τη σχέση: υ2 = ω2 (L – d)  ή  υ2 = 30 m/s.

Η κινητική ενέργεια του σώματος Σ1 τη χρονι-

κή στιγμή t2 είναι: 
1 1 1

21

2
 m    ή  Κ1 = 100 J, 

ενώ η κινητική ενέργεια του σώματος Σ2 την 

ίδια χρονική στιγμή είναι: 
2 2 2

21

2
 m 

ή  Κ2 = 450 J.

58. α. 

ω

α
γων

t = 3 s

β.	 Η γωνιακή επιτάχυνση (επιβράδυνση) του 
δίσκου από τη χρονική στιγμή t = 2 s έως τη χρο-
νική στιγμή t = 6 s παραμένει σταθερή. Είναι:




 

t

  ή   



0 20

6 2

2
rad s   

ή  αγων = 5 rad/s2.

γ. Από τη χρονική στιγμή t = 0 έως τη χρονική 
στιγμή t = 2 s ο δίσκος εκτελεί ομαλή στρο-
φική κίνηση. Από το δοθέν διάγραμμα προ-
κύπτει ότι το μέτρο της γωνιακής ταχύτητας 
του δίσκου από τη χρονική στιγμή t = 0 έως 
τη χρονική στιγμή t = 2 s είναι ω0 = 20 rad/s.
Έστω Δθ1 η γωνία στροφής του δίσκου στο 
χρονικό διάστημα Δt1, από τη χρονική t = 0 
έως τη χρονική στιγμή t = 2 s. Είναι:
Δθ1 = ω0Δt1  ή  Δθ1 = 40 rad.
Έστω Δθ2 η γωνία στροφής του δίσκου στο 
χρονικό διάστημα Δt2, από τη χρονική στιγμή  
t = 2 s έως τη χρονική στιγμή t = 6 s. Είναι:

� � �� � ����2 0 2 2

21

2
� �t t( )   ή  Δθ2 = 40 rad.

Η γωνία στροφής του δίσκου από τη χρονική 
στιγμή t = 0 έως τη χρονική στιγμή t = 6 s εί-
ναι: Δθ = Δθ1 + Δθ2  ή  Δθ = 80 rad.
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δ. Έστω ω το μέτρο της γωνιακής ταχύτητας 
του δίσκου τη χρονική στιγμή t = 4 s. Έχουμε:
� � ����� �

0
�t   ή  � � � �� ��� ��20 5 4 2 rad s/

ή  ω = 10 rad/s.
Το μέτρο της κεντρομόλου επιτάχυνσης ενός 
υλικού σημείου της περιφέρειας του δίσκου 
τη χρονική στιγμή t = 4 s υπολογίζεται από τη 
σχέση: ακ = ω2R  ή  ακ = 40 m/s2.

59.	 α.	 Από τη χρονική στιγμή t = 0 έως τη 
χρονική στιγμή t = 5 s το στερεό σώμα εκτελεί 
ομαλά επιταχυνόμενη στροφική κίνηση. Από τη 
χρονική t = 5 s έως τη χρονική στιγμή t = 15 s το 
στερεό σώμα εκτελεί ομαλή στροφική κίνηση. 
Από τη χρονική στιγμή t = 15 s έως τη χρονική 
στιγμή t = 20 s το στερεό σώμα εκτελεί ομαλά 
επιβραδυνόμενη στροφική κίνηση.

β. Η αλγεβρική τιμή της γωνιακής επιτάχυν-
σης του στερεού σώματος στο χρονικό διάστη-

μα από t = 0 έως t = 5 s είναι:  
 1  


t

ή   1

220 5

5
  


rad s   ή  αγων(1) = +3 rad/s2.

Η αλγεβρική τιμή της γωνιακής επιτάχυνσης 
του στερεού στο χρονικό διάστημα από t = 5 s 
έως t = 15 s είναι: αγων(2) = 0.
Η αλγεβρική τιμή της γωνιακής επιτάχυνσης 
του στερεού στο χρονικό διάστημα από t = 15 s 
έως t = 20 s είναι: 




 3  

t

  ή   3

20 20

5
  


rad s   

ή  αγων(3) = – 4 rad/s2.

Η ζητούμενη γραφική παράσταση απεικονίζε-
ται στο επόμενο σχήμα.

0 5
15

t(s)
20

�4

+3
αγων (rad/s2)

γ. Από το δοθέν διάγραμμα προκύπτει ότι για 
t = 0 είναι ω0 = 5 rad/s.
Έστω ω1 το μέτρο της γωνιακής ταχύτητας του 
στερεού σώματος τη χρονική στιγμή t1. Είναι:
ω1 = ω0 + αγων(1)Δt  ή  ω1 = ω0 + αγων(1)t1

ή  ω1 = 14 rad/s.
Έστω Δθ1 η γωνία στροφής του στερεού σώ-
ματος στο χρονικό διάστημα Δt1, από τη χρο-
νική t1 έως τη χρονική στιγμή t = 5 s. Είναι:

� � �� � ����1 1 1 1 1

21

2
� �t t

( )
( )   ή  Δθ1 = 34 rad.

Από το δοθέν διάγραμμα προκύπτει ότι το μέ-
τρο της γωνιακής ταχύτητας του στερεού σώ-
ματος από τη χρονική στιγμή t = 5 s έως τη 
χρονική στιγμή t = 15 s, είναι σταθερό και ίσο 
με ω2 = 20 rad/s.
Έστω Δθ2 η γωνία στροφής του σώματος στο 
χρονικό διάστημα Δt2, από τη χρονική t = 5 s 
έως τη χρονική στιγμή t = 15 s. Είναι:
Δθ2 = ω2Δt2  ή  Δθ2 = 200 rad.

Έστω Δθ3 η γωνία στροφής του στερεού σώ-
ματος στο χρονικό διάστημα Δt3, από τη χρο-
νική t = 15 s έως τη χρονικήστιγμή t2. Είναι:

� � �� � ����3 2 3 3 3

21

2
� �t t

( )
( )   ή  Δθ3 = 18 rad.

Επομένως, η γωνία στροφής του στερεού σώ-
ματος από τη χρονική στιγμή t1 έως τη χρονική 
στιγμή t2 είναι: Δθ = Δθ1 + Δθ2 + Δθ3

ή  Δθ = 252 rad.
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δ. Έστω ω3 το μέτρο της γωνιακής ταχύτητας 
του στερεού σώματος τη χρονική στιγμή t3. 
Έχουμε: � � ����3 2 3

� � �
( )
�t

ή  �
3

20 4 17 15� � �� ��� �� rad s/

ή  ω3 = 12 rad/s.
Έστω υ το μέτρο της γραμμικής ταχύτητας 
ενός υλικού σημείου Α του στερεού τη χρονι-
κή στιγμή t3. Είναι: υ = ω3r  ή  υ = 3,6 m/s.

60. α. Από τη χρονική στιγμή t = 0 έως τη 
χρονική στιγμή t = 2 s ο δίσκος εκτελεί ομαλά 
επιταχυνόμενη στροφική κίνηση με γωνιακή 
επιτάχυνση της οποίας η αλγεβρική τιμή είναι 
αγων(1) = +4 rad/s2.

Από τη χρονική στιγμή t = 2 s έως τη χρονική 
στιγμή t = 6 s ο δίσκος εκτελεί ομαλή στροφι-
κή κίνηση.
Από τη χρονική στιγμή t = 6 s έως τη χρο-
νική στιγμή t = 10 s ο δίσκος εκτελεί ομαλή 
επιβραδυνόμενη κίνηση με γωνιακή επιτά-
χυνση της οποίας η αλγεβρική τιμή είναι 
����( )

.
2

2
2� � rad s/

Έστω ω1 η αλγεβρική τιμή της γωνιακής τα-
χύτητας του δίσκου τη χρονική στιγμή t = 2 s. 
Είναι: ω1 = ω0 + αγων(1)Δt

ή  �
1

0 4 2 0� � �( ) rad s/   ή  ω1 = 8 rad/s.
Από τη χρονική στιγμή t = 2 s έως τη χρονική 
στιγμή t = 6 s η αλγεβρική τιμή της γωνιακής 
ταχύτητας του δίσκου παραμένει σταθερή και 
ίση με ω1.
Έστω ω2 η αλγεβρική τιμή της γωνιακής ταχύ-
τητας του δίσκου τη χρονική στιγμή t = 10 s. 
Είναι: � � ����2 1 2

� � �
( )
�t

ή  �
2

8 2 10 6� � �� ��� �� rad s/   ή  ω2 = 0.

Στο διάγραμμα του ακόλουθου σχήματος απει-
κονίζεται η γραφική παράσταση της αλγεβρι-
κής τιμής της γωνιακής ταχύτητας του δίσκου 
σε συνάρτηση με τον χρόνο.

0 2

+8

t(s)6

Ε

10

ω(rad/s)

β. Η γωνία στροφής Δθ του δίσκου από τη  
χρονική στιγμή t = 0 έως τη χρονική στιγμή  
t = 10 s είναι αριθμητικά ίση με το γραμμοσκι-
ασμένο εμβαδόν Ε του τραπεζίου που φαίνεται 
στο παραπάνω σχήμα.

Είναι: �� � �
��

�
�

�
�
�

10 4

2
8 rad   ή  Δθ = 56 rad.

γ. Έστω Δθ1 η γωνία στροφής του δίσκου στο 
χρονικό διάστημα Δt1, από τη χρονική t = 0 
έως τη χρονική στιγμή t = 2 s. Είναι:

� � �� � ����1 0 1 1

21

2
� �t t

( )
( )

ή  � �� ����1 1 1

21

2
�

( )
( )t   ή  Δθ1 = 8 rad.

Έστω Δθ2 η γωνία στροφής του δίσκου στο 
χρονικό διάστημα Δt2 από τη χρονική t = 2 s 
έως τη χρονική στιγμή t = 4 s. Είναι:
Δθ2 = ω1Δt2  ή  Δθ2 = 16 rad.
Η γωνία στροφής � ��  του δίσκου από τη χρο-
νική στιγμή t = 0 έως τη χρονική στιγμή t = 4 s 
είναι: � � �� � �� � �

1 2
  ή  � � �� 24 rad.

Το μήκος του τόξου που διαγράφει ένα υλικό 
σημείο της περιφέρειας του δίσκου από τη χρο-
νική στιγμή t = 0 έως τη χρονική στιγμή t = 4 s 
υπολογίζεται από τη σχέση: s = RΔθ
ή  s = 19,2 m.
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δ. Έστω ω3 η αλγεβρική τιμή της γωνιακής τα-
χύτητας του δίσκου τη χρονική στιγμή t = 8 s. 
Είναι: ω3 = ω1 + αγων(2)Δt3

ή  �
3

8 2 8 6� � �� ��� �� rad s/   ή  ω3 = 4 rad/s.

Το μέτρο της κεντρομόλου επιτάχυνσης ενός 
σημείου της περιφέρειας του δίσκου τη χρονι-
κή στιγμή t3 υπολογίζεται από τη σχέση:
� �� � 3

2
R   ή  ακ = 12,8 m/s2.

61. α. 

ω
1

α
γων(1)

K

t
1 ω

2

α
γων(2)

K

t
2

β. Επειδή, όπως προκύπτει από το δοθέν δι-
άγραμμα, η αλγεβρική τιμή της γωνιακής τα-
χύτητας του δίσκου μεταβάλλεται με σταθερό 
ρυθμό, η γωνιακή του επιτάχυνση παραμένει 
σταθερή. 
Επομένως, η γωνιακή επιτάχυνση του δίσκου 
τις χρονικές στιγμές t1 και t3 είναι η ίδια. Έστω 
αγων η αλγεβρική τιμή της γωνιακής επιτάχυν-

σης του δίσκου. Έχουμε: � �
��� �

�
�t

ή  ���� �
� �

�
10 20

6 0

2
rad s/

ή  ���� � �5
2

rad s/   ή  |αγων| = 5 rad/s2.

γ. Από το δοθέν διάγραμμα προκύπτει ότι για 
t = 0 είναι ω0 = +20 rad/s.
Η αλγεβρική τιμή της γωνιακής ταχύτητας του 
δίσκου σε συνάρτηση με τον χρόνο δίνεται 
από τη σχέση: ω = ω0 + αγωνt (1).

Από τη σχέση (1) για ω = 0 και t = t2, προκύ-

πτει: 0 = ω0 + αγωνt2  ή  t
2

0� �
�

����

ή  t2 = 4 s.

δ. Η γωνιακή μετατόπιση Δθ1 του δίσκου στο 
χρονικό διάστημα Δt1, από τη χρονική στιγμή 
t = 0 έως τη χρονική στιγμή t2, υπολογίζεται 

από τη σχέση: � � �� � ����1 0 1 1

21

2
� �t t( )

ή  Δθ1 = +40 rad.
Η γωνιακή μετατόπιση του δίσκου στο χρονι-
κό διάστημα Δt2, από τη χρονική στιγμή t2 έως 
τη χρονική στιγμή t = 6 s, υπολογίζεται από τη 

σχέση: � �� ����2 2

21

2
� ( )t   ή  ��

2
10� � rad.

Η γωνία στροφής Δθ του δίσκου από τη χρονική 
στιγμή t = 0 έως τη χρονική στιγμή t = 6 s είναι:
Δθ = |Δθ1| + |Δθ2|  ή  Δθ = 50 rad.
Επομένως, το πλήθος των περιστροφών που 
εκτελεί ο δίσκος από τη χρονική στιγμή t = 0 

έως τη χρονική στιγμή t = 6 s είναι: � �
�

�

�2
ή  Ν = (25/π) περιστροφές.

62.	 α. Επειδή, όπως προκύπτει από το δοθέν 
διάγραμμα, η αλγεβρική τιμή της γωνιακής τα-
χύτητας του δίσκου μεταβάλλεται με σταθερό 
ρυθμό, η γωνιακή του επιτάχυνση παραμένει 
σταθερή. Επομένως, η γωνιακή επιτάχυνση 
του δίσκου τις χρονικές στιγμές t = 2 s και 
t = 6 s είναι η ίδια. Έστω αγων η αλγεβρική τιμή 
της γωνιακής επιτάχυνσης του δίσκου. Είναι:

�
�

��� �
�
�t

  ή  ���� �
� �
�

20 20

8 0

2( )
rad s/

ή  αγων = 5 rad/s2.
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β. Από το δοθέν διάγραμμα προκύπτει ότι για  
t = 0 είναι �

0
20� � rad s/ .  

Η αλγεβρική τιμή της γωνιακής ταχύτητας του 
δίσκου σε συνάρτηση με τον χρόνο δίνεται 
από τη σχέση: ω = ω0 + αγωνt (1).

Από τη σχέση (1) για ω = 0 και t = t1 προκύ-

πτει: 0 = ω0 + αγωνt1  ή  t
1

0� �
�

����

  ή  t1 = 4 s.

γ. Έστω Δθ1 η γωνιακή μετατόπιση του δίσκου 
στο χρονικό διάστημα Δt1, από τη χρονική 
στιγμή t = 0 έως τη χρονική στιγμή t1. Έχουμε:

� � �� � ����1 0 1 1

21

2
� �t t( )   ή  ��

1
40� � rad.

Έστω Δθ2 η γωνιακή μετατόπιση του δίσκου 
στο χρονικό διάστημα Δt2, από τη χρονική 
στιγμή t1 έως τη χρονική στιγμή t = 8 s. Έχου-

με: � �� ����2 2

21

2
� ( )t   ή  Δθ2 = +40 rad.

Η γωνία στροφής Δθ του δίσκου από τη χρονική 
στιγμή t = 0 έως τη χρονική στιγμή t = 8 s είναι:
Δθ = |Δθ1| + |Δθ2|  ή  Δθ = 80 rad.
Επομένως, το πλήθος των περιστροφών που 
εκτελεί ο δίσκος από τη χρονική στιγμή t = 0 
έως τη χρονική στιγμή t = 8 s είναι:

�
�

�
�

�2
  ή  Ν = (40/π) περιστροφές.

δ. Έστω ω η αλγεβρική τιμή της γωνιακής τα-
χύτητας του δίσκου τις χρονικές στιγμές στις 
οποίες το μέτρο της κεντρομόλου επιτάχυνσης 
ενός υλικού σημείου της περιφέρειας του δί-
σκου είναι ακ = 40 m/s2. Έχουμε: ακ = ω2R
ή  � � �10 rad s/ .

Έστω t2 η χρονική στιγμή στην οποία είναι 
� � �10 rad s/ .

Από τη σχέση (1) για � � �10 rad s/  και t = t2, 

προκύπτει: t
2

0�
�� �

����

  ή  t2 = 2 s.

Έστω t3 η χρονική στιγμή στην οποία είναι 

ω = +10 rad/s.

Από τη σχέση (1) για ω = +10 rad/s και t = t3 

προκύπτει: t
3

0�
�� �

����

  ή  t3 = 6 s.

63.	 α. Στα παρακάτω σχήματα έχουν σχεδια­
στεί τα διανύσματα της γωνιακής επιτάχυνσης 
του δίσκου τις χρονικές στιγμές t = 2 s και  
t = 25 s.

ω

α
γων(1)

t = 2 s

ω
α

γων(2)

t = 25 s

(+)

β.	 Η γωνιακή επιτάχυνση του δίσκου από τη 
χρονική στιγμή t = 0 έως τη χρονική στιγμή 
t = 10 s παραμένει σταθερή. Έστω αγων(1) η αλ-
γεβρική τιμή της γωνιακής επιτάχυνσης του 
δίσκου στο παραπάνω χρονικό διάστημα.

Είναι:  
 1  


t

 

ή   1

2
0 10

5 0
  

  


rad s

ή  αγων(1) = 2 rad/s2.

Έστω αγων(2) η αλγεβρική τιμή της γωνιακής 
επιτάχυνσης του δίσκου από τη χρονική στιγ-

μή t = 10 s έως τη χρονική στιγμή t = 20 s. 

Σύμφωνα με το δοθέν διάγραμμα ο δίσκος 

εκτελεί ομαλή στροφική κίνηση ( .),


   

οπότε αγων(2) = 0.
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Έστω ω1 η αλγεβρική τιμή της γωνιακής ταχύ-
τητας του δίσκου τη χρονική στιγμή t = 10 s. 
Είναι: ω1 = ω0 + αγων(1)t 

ή  ω1 = (–10 + 2 ·10) rad/s  ή  ω1 = +10 rad/s.

Έστω αγων(3) η αλγεβρική τιμή της γωνιακής 
επιτάχυνσης του δίσκου από τη χρονική στιγ-
μή t = 20 s έως τη χρονική στιγμή t = 30 s. Εί-

ναι:  
 3  


t

  ή   3

20 10

30 20
  




rad s   

ή    αγων(3) = –1 rad/s2.

Στο ακόλουθο διάγραμμα απεικονίζεται η γρα-
φική παράσταση της αλγεβρικής τιμής της γω-
νιακής επιτάχυνσης του δίσκου σε συνάρτηση 
με τον χρόνο, από τη χρονική στιγμή t = 0 έως 
τη χρονική στιγμή t = 30 s.

0 10
20 30

t(s)
�1

+2
αγων (rad/s2)

γ.	 Έστω Δθ1 η γωνία στροφής του δίσκου από 
τη χρονική στιγμή t = 0 έως τη χρονική στιγμή 
t = 5 s. Η γωνία στροφής Δθ1 ισούται αριθμη-
τικά με το γραμμοσκιασμένο εμβαδόν Ε1 του 
τριγώνου που φαίνεται στο παρακάτω σχήμα.

0 10 20 30 t(s)

�10

+10
ω(rad/s)

5
Ε1

Ε2

Είναι: Δθ1 = Ε1   ή   
1

5 10

2
 

rad

ή   Δθ1 = 25 rad.

Έστω Δθ2 η γωνία στροφής του δίσκου από τη 
χρονική στιγμή t = 10 s έως τη χρονική στιγμή 
t = 30 s. Η γωνία στροφής Δθ2 ισούται αριθμη-
τικά με το γραμμοσκιασμένο εμβαδόν Ε2 του 
τραπεζίου που φαίνεται στο παραπάνω σχήμα. 

Είναι: 
2

10 25

2
10 





· rad

ή  Δθ2 = 175 rad.

Συνεπώς, η γωνία στροφής Δθ του δίσκου από 
τη χρονική στιγμή t = 0 έως τη χρονική στιγμή 
t = 30 s είναι:  Δθ = Δθ1 + Δθ2  ή  Δθ = 200 rad.

Το πλήθος Ν των περιστροφών που εκτελεί ο 
δίσκος από τη χρονική στιγμή t = 0 έως τη χρο-

νική στιγμή t = 30 s είναι N  
2

  

ή  Ν = (100/π) περιστροφές.

δ.	 Έστω ω2 η αλγεβρική τιμή της γωνιακής τα-
χύτητας του δίσκου τη χρονική στιγμή t = 3 s. 
Είναι: ω2 = ω0 + αγων(1)t

ή  ω2 = (–10 + 2 · 3) rad/s  ή  ω2 = – 4 rad/s.

Έστω Fκ το μέτρο της κεντρομόλου δύναμης 
που ασκείται στο υλικό σημείο Α τη χρονική 
στιγμή t = 3 s. Είναι: Fκ = mακ  ή  F m R 

2

2   
ή  Fκ = 16 · 10–3 Ν.

ε.	 Έστω ω3 η αλγεβρική τιμή της γωνιακής τα-
χύτητας του δίσκου τη χρονική στιγμή t = 25 s. 
Είναι: ω3 = ω1 + αγων(3)Δt   ή


3

10 1 25 20     rad s   ή  ω3 = 5 rad/s.

Το μέτρο υΑ της γραμμικής ταχύτητας του 
υλικού σημείου Α τη χρονική στιγμή t = 25 s 
είναι: υΑ = ω3R  ή  υΑ = 5 m/s. Η κινητική 
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ενέργεια του υλικού σημείου Α τη χρονική 
στιγμή t = 25 s υπολογίζεται από τη σχέση:

K m  1

2

2   ή  ΚΑ = 125 · 10–4 J.
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2.2	Οι κινήσεις των στερεών σωµάτων:
Σύνθετη κίνηση στερεού σώµατος

ΘΕΜΑΤΑ A

Α.	Θέµατα πολλαπλής επιλογής

  8. γ   9. δ 10. β 11. α 12. γ

13. α 14. β 15. β 16. α 17. α

18. β 19. β 20. α 21. δ

Β.	Θέµατα του τύπου Σωστό/Λάθος

22. α. Σ β. Λ γ. Σ δ. Σ ε. Λ στ. Σ

23. α. Σ β. Λ γ. Σ δ. Σ ε. Σ

24. α. Σ β. Λ γ. Λ δ. Σ ε. Λ

25. α. Λ β. Λ γ. Σ δ. Σ ε. Σ
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26. Σωστή επιλογή είναι η α.
Έστω υ1 το μέτρο της ταχύτητας του ανώτερου 
σημείου του τροχού τη χρονική στιγμή t και 
υ2 το μέτρο της ταχύτητας ενός σημείου της 
περιφέρειας του τροχού που απέχει απόσταση 
d = R από το οριζόντιο δάπεδο την ίδια χρονι-
κή στιγμή. Επειδή ο τροχός κυλίεται χωρίς να 
ολισθαίνει, ισχύει:

υ1 = 2υcm  (1)  και  
2

2
cm

 (2).

Με διαίρεση κατά μέλη των σχέσεων (1) και 
(2) προκύπτει:






1

2

2

2
 cm

cm

  ή  υ
υ

1

2
2= .

27. Σωστή επιλογή είναι η β.
Επειδή ο δίσκος κυλίεται χωρίς να ολισθαίνει, 
το μέτρο υcm της ταχύτητας του κέντρου μάζας 
του τη χρονική στιγμή t1 δίνεται από τη σχέση: 
υcm = ωR (1).
Τη χρονική στιγμή t1 το σημείο Β έχει λόγω 
της μεταφορικής κίνησης του δίσκου ταχύτη-
τα υ

cmcm
 και λόγω της στροφικής κίνησης του 

δίσκου γραμμική ταχύτητα υ.
Το μέτρο της γραμμικής ταχύτητας του ση­
μείου Β δίνεται από τη σχέση υ = ωr (2).
Η ταχύτητα υB  του σημείου Β τη χρονική 
στιγμή t1 είναι:   

  
B cm
   ή, θεωρώντας ως 

θετική φορά τη φορά προς τα δεξιά:
  

B cm
   ή, λόγω των σχέσεων (1) και (2): 

  
B

R r    ή, για r = R – d = R R R 
3

2

3
,

 
B

R
R 





2

3
  ή  υ ωB R= 1

3
.

R
K

υcmυ B

28. Σωστή επιλογή είναι η β. 
Το σημείο Α τη χρονική στιγμή t1 έχει ταχύ-
τητα υ

cmcm
 λόγω της μεταφορικής κίνησης του 

δίσκου και γραμμική ταχύτητα υ  λόγω της 
στροφικής κίνησης του δίσκου. Η ταχύτητα 


υA  του σημείου Α τη χρονική στιγμή t1 είναι: 
  

  
A cm
  .

A

θ

R

K

x

d

θ

υcm

υΑυ

Επειδή στο σημείο Α τα διανύσματα υ
cmcm

 και 


υ  σχηματίζουν γωνία θ, το μέτρο της ταχύτη-
τας του σημείου Α τη χρονική στιγμή t1 είναι:

       
cm cm

2 2
2    

ή       2 2
2 2

cm cm
 (1).

Από το παραπάνω σχήμα προκύπτει:

  x

R
  ή    d R

R
  ή    1

2
 (2).

Από τις σχέσεις (1) και (2) προκύπτει:

υ υΒ = 3 cm.
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29. Σωστή επιλογή είναι η γ.
Έστω αcm το μέτρο της επιτάχυνσης του κέ-
ντρου μάζας του τροχού. Το μέτρο της ταχύτη-
τας του κέντρου μάζας του τροχού τη χρονική 
στιγμή t1 δίνεται από τη σχέση: 
υcm = αcmt1 (1).

Έστω υ το μέτρο της ταχύτητας του ανώτατου 
σημείου του τροχού τη χρονική στιγμή t2 = 2t1 
και 

cm
 το μέτρο της ταχύτητας του κέντρου 

μάζας του τροχού την ίδια χρονική στιγμή. 
Ισχύει:
  2

cm
  ή  υ = 2αcmt2  ή  υ = 2αcm2t1  

ή  υ = 4αcmt1  ή, λόγω της σχέσης (1), 

υ = 4υcm. 

30. Σωστή επιλογή είναι η α.
Τη χρονική στιγμή t1 το σημείο Β έχει λόγω 
της μεταφορικής κίνησης του δίσκου, ταχύτη-
τα υ

cmcm
 και, λόγω της στροφικής κίνησης του 

δίσκου γραμμική ταχύτητα υ.  Το σημείο Β 
εκτελεί κυκλική κίνηση ακτίνας r R= 2  γύρω 
από το κέντρο Κ του δίσκου. Το μέτρο της 
γραμμικής ταχύτητας του σημείου Β τη χρο-

νική στιγμή t1 είναι: υ = ωr  ή    R

2
 (1), 

όπου ω το μέτρο της γωνιακής ταχύτητας του 
δίσκου τη χρονική στιγμή t1.

Επειδή ο δίσκος κυλίεται χωρίς να ολισθαίνει, 
το μέτρο της ταχύτητας του κέντρου μάζας του 
τη χρονική στιγμή t1 είναι: υcm = ωR (2).

Έστω υB  η ταχύτητα του σημείου Β τη χρονι-
κή στιγμή t1. Είναι:   

    
cm

 (3).

K
d

B

R

rR / 2 υcm υB

υ

Επειδή στο σημείο Β τα διανύσματα υ
cm

 και 


υ  έχουν την ίδια φορά, το μέτρο της ταχύτη-
τας του σημείου Β τη χρονική στιγμή t1 είναι:
υΒ = υcm + υ ή, λόγω των σχέσεων (1) και (2):

    R
R

2
  

ή   
B

R 3

2
 ή, λόγω της σχέσης (2):

 
B cm
 3

2
  ή  υ υcm B= 2

3
.

31. Α. Σωστή επιλογή είναι η β.

υcm

υcm

υAυ

R

K

B

t1

A

υ

Έστω υA  η ταχύτητα του σημείου Α της περι-
φέρειας του τροχού που φαίνεται στο παραπά-
νω σχήμα τη χρονική στιγμή t1. Είναι:
  

  
A cm
   όπου υ

cm
 η ταχύτητα του σημείου 

Α τη χρονική στιγμή t1 λόγω της μεταφορικής 
κίνησης του τροχού και υ η γραμμική ταχύτη-
τα του σημείου Α την ίδια χρονική στιγμή λόγω 
της στροφικής κίνησης του τροχού. Επειδή τα 
διανύσματα υ

cmcm
 και υ  είναι κάθετα μεταξύ 

τους, το μέτρο της ταχύτητας υA  είναι: 
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    
cm

2 2   ή  5

2

2 2  
cm cm

    

ή  5

4

2 2 2  
cm cm

    ή   
 cm

2
  ή  υcm = 2υ  

ή  υcm = 2ωR (1).

Συνεπώς, αφού είναι:  
cm

R , ο τροχός κυ-
λίεται ολισθαίνοντας.

Β. Σωστή επιλογή είναι η γ. 
Έστω 



υB  η ταχύτητα του ανώτατου σημείου  
Β του τροχού τη χρονική στιγμή t1. Είναι:
  

  
B cm
    (2), όπου υ

cmcm
 η ταχύτητα του 

σημείου Β τη χρονική στιγμή t1 λόγω της  
μεταφορικής κίνησης του τροχού και    η 
γραμμική ταχύτητα του σημείου Β την ίδια 
χρονική στιγμή λόγω της στροφικής κίνησης 
του τροχού. Είναι:   R  ή, λόγω της σχέ-

σης (1):  


cm

2
 (3).

Επειδή τα διανύσματα υ
cmcm

 και    στο σημείο 
Β έχουν την ίδια φορά, η σχέση (2) γράφεται:
  

B cm
     ή, λόγω της σχέσης (3):  

υ υB cm= 3
2

.

32. Σωστή επιλογή είναι η β. 

Ισχύει: N
A

A 
2

  ή  N

s

R

A

A

A
2

ή  N
R

s

A

A

A


2

  ή  N
t

R
A

cm




2
 (1).

Ισχύει επίσης: N
B

B 
2

  ή  N

s

R

B

B

B
2

ή  N
R

s
B

B

 
2

  ή  N
t

R
B

cm




2 2

ή  N
t

R
B

cm




4
 (2).

Από τις σχέσεις (1) και (2) προκύπτει:
NA = 2NB.

33. Σωστή επιλογή είναι η α.
Ισχύει: s = RΔθ  ή  s = 20 m.

34. Σωστή επιλογή είναι η β.
Το μέτρο της ταχύτητας του σημείου Α, λόγω 
της στροφικής κίνησης που εκτελεί ο δίσκος, 
ισούται με το μέτρο υ της γραμμικής του τα-

χύτητας. Συνεπώς ισχύει:  υ = ωr  ή  υ υ
= cm

R
r.

35. Α. Σωστή επιλογή είναι η α.
Η ταχύτητα   ενός σημείου Σ του δίσκου τη 
χρονική στιγμή t1 είναι ίση με τη συνισταμένη 
της ταχύτητας υ

cmcm
 που έχει, λόγω της μεταφο-

ρικής κίνησης του δίσκου, και της γραμμικής 
ταχύτητας υ  που έχει, λόγω της στροφικής κί-
νησης του δίσκου. Δηλαδή, είναι:
  

    
cm

 (1).

Αν το σημείο Σ έχει την ίδια ταχύτητα με το 
κέντρο μάζας του δίσκου ( ),

 

   cm
 τότε 

από τη σχέση (1) προκύπτει:    

  
cm cmcm cm

    ή  




  0   ή  υ = 0.
που είναι άτοπο, γιατί όλα τα σημεία του δί-
σκου (εκτός από το κέντρο μάζας του) έχουν 
τη χρονική στιγμή t1 γραμμικές ταχύτητες των 
οποίων τα μέτρα είναι ανάλογα των αποστάσεών 
τους από το κέντρο μάζας του δίσκου (υ = ωr).

Β. Σωστή επιλογή είναι η β.
Τη χρονική στιγμή t1 το σημείο Α έχει ταχύ-
τητα υ

cmcm
, λόγω της μεταφορικής κίνησης του 

δίσκου, και γραμμική ταχύτητα υ, λόγω της 
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στροφικής κίνησης του δίσκου, όπως φαίνεται 
στο ακόλουθο σχήμα. Έστω   η ταχύτητα 
του σημείου Α τη χρονική στιγμή t1. Είναι: 
  

  
A cm
  .

Έστω φ η γωνία που σχηματίζουν τα διανύ-
σματα υ

cmcm
 και υ  στο σημείο Α τη χρονική 

στιγμή t1. Το μέτρο της ταχύτητας υA  τη χρο-
νική στιγμή t1 δίνεται από τη σχέση:

    
A cm cm
  2 2

2  (1).

υcm

υΑυ

A

K

t1

R
60°

60°
φ60°

x

d

Επειδή ο δίσκος κυλίεται χωρίς να ολισθαίνει, 
για τα σημεία της περιφέρειάς του ισχύει ότι: 
υcm = υ (2). Επειδή, σύμφωνα με την εκφώνη-
ση, είναι υΑ = υcm, από τη σχέση (1) έχουμε:

    
cm cm cm

  2 2
2   

ή      
cm cm cm

2 2 2
2   ,  

ή, λόγω της σχέσης (2):    
cm cm cm

2 2 2
2 2    

ή     1

2
  ή  φ = 120°.

Επειδή τα διανύσματα υ
cmcm

 και υ  στο σημείο 
Α είναι ίσα, το διάνυσμα   διχοτομεί τη γω-
νία φ που σχηματίζουν τα διανύσματα υ

cmcm
 και 



υ.  Από το σχήμα προκύπτει:

60  x

R
  ή  x

R
=

2
.

Συνεπώς, η απόσταση του σημείου Α από το 

οριζόντιο δάπεδο είναι: d R x    ή  d R=
2

.

36. Σωστή επιλογή είναι η γ.
Έστω   η ταχύτητα του ανώτατου σημείου 
του τροχού. Η ταχύτητα του σημείου Α δίνε-
ται από τη σχέση:   

  
A cm
   (1), όπου υ   

η γραμμική ταχύτητα του σημείου Α. Επει-
δή τα διανύσματα υ

cmcm
 και υ  έχουν την ίδια 

φορά, η σχέση (1) γίνεται: 
υΑ = υcm + υ  ή  υΑ = υcm + ωR. 

Επειδή ο δίσκος κυλίεται χωρίς να ολισθαίνει 
ισχύει: υcm = ωR (2).
Συνεπώς από τη σχέση (1), λόγω της σχέσης 
(2), προκύπτει: υΑ = 2ωR (3).

K

A

Γ

υ

υcm

υcm

υcm

υΓ

υ

Έστω   η ταχύτητα του σημείου Γ του τρο-
χού. Είναι:   

     
cm

,  όπου    η γραμμική 
ταχύτητα του σημείου Γ.
Επειδή τα διανύσματα υ

cmcm
 και    είναι κά-

θετα μεταξύ τους, το μέτρο της ταχύτητας του 
σημείου Γ υπολογίζεται από τη σχέση:

     
cm

2 2
( )   ή       





( )R
R2

2

2
 

ή     5

2
R  (4).

Με διαίρεση κατά μέλη των σχέσεων (4) και 

(3) προκύπτει: υ
υ
Γ

A
= 5
4

.
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37. A. Σωστή επιλογή είναι η γ. 
Έστω   η ταχύτητα του άκρου Α του νήμα-
τος μια τυχαία χρονική στιγμή t και   η τα-
χύτητα του σημείου επαφής Ζ του νήματος με 
την κυκλική εγκοπή την ίδια χρονική στιγμή.

r
K

R

AΖ υ
Α

υ
Z

υ
cm

υ

Είναι:   

  
Z cm
   (1), όπου υ

cmcm
 η ταχύτητα 

του σημείου Ζ, λόγω της μεταφορικής κίνησης 
του δίσκου τη χρονική στιγμή t, και υ  η γραμ-
μική ταχύτητα του σημείου Ζ, λόγω της στρο-
φικής κίνησης του δίσκου την ίδια χρονική 
στιγμή. Από τη σχέση (1) έχουμε:   

Z cm
    

ή    
Z cm

r    ή    
Z cm

R 
2

 (2).

Επειδή ο δίσκος κυλίεται χωρίς να ολισθαίνει, 
ισχύει:  

cm
R  (3). Η σχέση (2), λόγω της 

σχέσης (3), γράφεται:   
Z

R
R 
2

  

ή   
Z

R 3

2
 ή, λόγω της σχέσης (3):

 
Z cm
 3

2
 (4). 

Επειδή το νήμα είναι μη εκτατό και δεν ολι-
σθαίνει στην περιφέρεια της κυκλικής εγκο-
πής, ισχύει:  

 
A Z
   ή  υΑ = υΖ  ή, λόγω της 

σχέσης (4):  
A cm
 3

2
  ή, παραγωγίζοντας:

d

dt

d

dt

cm
   3

2
  ή  αΑ =

3
2

αcm.

Β. Σωστή επιλογή είναι η α.

Είναι: s t
cm

 1

2

2   (5). Έστω αγων το μέτρο 

της γωνιακής επιτάχυνσης του δίσκου. Επειδή 
ο δίσκος κυλίεται χωρίς να ολισθαίνει, ισχύει: 

αcm = αγωνR  ή  � �
��� �

cm

R
.  Το μήκος   του 

νήματος που ξετυλίγεται από την περιφέρεια 
της κυκλικής εγκοπής σε χρονικό διάστημα Δt 
υπολογίζεται από τη σχέση:   r

ή    R
t

2

1

2

2   ή    1

4

2
R

R
t

cm




ή    1

4

2
cm

t  (6). 

Με διαίρεση κατά μέλη των σχέσεων (6) και 

(5) προκύπτει: 
s
= 1

2
  ή  = s

2
.

38. A. Σωστή επιλογή είναι η β.
Έστω υcm το μέτρο της ταχύτητας του κέντρου 
μάζας του δίσκου τη χρονική στιγμή t1. Επειδή 
ο δίσκος κυλίεται χωρίς να ολισθαίνει ισχύει: 
υcm = ωR.

r
R

υcm A
Ζ

υΑυ

Επειδή το νήμα είναι μη εκτατό και δεν ολι-
σθαίνει στην περιφέρεια της κυκλικής εγκο-
πής, ισχύει:  

 
A Z
   ή    

  
A cm
   

ή    
A cm
    ή      R r   

ή      R
R

2
  ή   

A
R 1

2
  ή  ω = 2 υA

R
.

Β. Σωστή απάντηση είναι η γ.
Έστω αγων το μέτρο της γωνιακής επιτάχυνσης 

του δίσκου. Είναι: αcm = αγωνR  ή   
 

cm

R
.

Το μήκος   του νήματος που έχει τυλιχθεί 
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στην περιφέρεια της κυκλικής εγκοπής από τη 
χρονική στιγμή t = 0 έως τη χρονική στιγμή t1 
είναι:    

1 2
  ή   = 2 .d

Το μήκος   του νήματος που έχει τυλιχθεί 
στην περιφέρεια της κυκλικής εγκοπής από 
τη χρονική στιγμή t = 0 έως τη χρονική στιγ-
μή t1 υπολογίζεται από τη σχέση:   r   ή  

  R

2
  (1), όπου Δθ η γωνία στροφής του 

δίσκου από τη χρονική στιγμή t = 0  έως τη 

χρονική στιγμή t1. Είναι:    1

2

2
t   ή  

 


 1

2

2cm

R
t  (2). Από τη σχέση (1), λόγω 

της σχέσης (2), προκύπτει:   1

4

2
cm

t   

ή, επειδή  = 2d,  2
1

4

2
d t

cm
    (3). 

Το διάστημα scm που διανύει το κέντρο μάζας 
του δίσκου από τη χρονική στιγμή t = 0 έως 
τη χρονική στιγμή t1 δίνεται από τη σχέση: 

s t
cm cm

 1

2

2   (4). Με διαίρεση κατά μέλη 

των σχέσεων (3) και (4) προκύπτει:
2 1

2

d

s
cm

=   ή  scm = 4d.

39. Α. Σωστή επιλογή είναι η β.

Α
r

K

Γ

R2

R1

υcmυcm

υΑ

υcmυ

υ

d

Το σημείο επαφής Γ του κυλίνδρου με τη σα-
νίδα τη χρονική στιγμή t1 έχει ταχύτητα υ

cmcm
, 

λόγω της μεταφορικής κίνησης του καρου-
λιού, και γραμμική ταχύτητα υ, λόγω της 
στροφικής κίνησης του καρουλιού. Έστω   

η ταχύτητα του σημείου Γ. Επειδή ο κύλιν-
δρος κυλίεται χωρίς να ολισθαίνει στη σανίδα,  
ισχύει:  



  0   ή   



 
cm
  0   ή   

cm
  0   

ή  υcm = υ  ή  υcm = ωR2  ή  υcm = ωR.

Τη χρονική στιγμή t1 το σημείο Α έχει ταχύ-
τητα υ

cm
,  λόγω της μεταφορικής κίνησης του 

καρουλιού, και γραμμική ταχύτητα 


 ,  λόγω 
της στροφικής κίνησης του καρουλιού. Έστω 


 η ταχύτητα του σημείου Α τη χρονική στιγ-
μή t1. Είναι:   

  
A cm
  .  Επειδή τα διανύ-

σματα υ
cmcm

 και    είναι κάθετα μεταξύ τους, 
το μέτρο της ταχύτητας του σημείου Α υπολο-

γίζεται από τη σχέση:   
A cm
  2 2

( )   

ή    
A

R R ( ) ( )
2 2

2   ή  υ ωA R= 5 .

B. Σωστή επιλογή είναι η β.
Το διάστημα που διανύει το κέντρο μάζας του 
κυλίνδρου σε χρόνο Δt δίνεται από τη σχέση: 
s = υcmΔt  ή  s = ωRΔt (1). Το μήκος του τόξου 
που διανύει το σημείο Α σε χρόνο Δt δίνεται 
από τη σχέση: sA = R1Δθ  ή  sA = 2RωΔt (2). 
Από τις σχέσεις (1) και (2) προκύπτει ότι:
sA = 2s.

40. Σωστή επιλογή η γ.
Επειδή ο δίσκος κυλίεται χωρίς να ολισθαίνει 
με το κέντρο μάζας του να κινείται με σταθε-
ρή ταχύτητα, η επιτάχυνση του κέντρου μάζας 
του είναι ίση με μηδέν (αcm = 0). Η επιτρόχια 
επιτάχυνση του σημείου Α είναι αε = αγωνR   
ή  αε = αcm  ή  αε = 0. Συνεπώς, η επιτάχυνση 
του σημείου Α είναι ίση με την κεντρομόλο 
επιτάχυνσή του. Επομένως, είναι αΑ = ακ(Α)  ή  




A
R


2

 (1), όπου υ η γραμμική ταχύτητα του 
σημείου Α. Επειδή ο δίσκος κυλίεται χωρίς να 
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ολισθαίνει, ισχύει: υ = υcm, οπότε η σχέση (1) 

γράφεται: αΑ
=

υcm

R

2

.

41. Σωστή επιλογή είναι η γ.
Έστω ότι το σημείο Α βρίσκεται σε ύψος h < R 
όπως φαίνεται στο σχήμα και τη χρονική στιγ-
μή t1 η ταχύτητά του, λόγω της μεταφορικής 
κίνησης του δίσκου, είναι υ

cmcm
, και η γραμμική 

του ταχύτητα, λόγω της στροφικής κίνησης 
του δίσκου, είναι υ.

K

A h

R

r

υcm

υcm

υ

Είναι:   

  
A cm
    ή    

A cm
    

ή  υΑ = ωR – ωr  ή  υΑ = ω(R – r) (1). Όπως 
προκύπτει από το σχήμα, είναι: h = R – r. 
Επομένως, η σχέση (1) γράφεται: υΑ = ωh (2).
Δηλαδή, σύμφωνα με τη σχέση (2), η ταχύτη-
τα του σημείου Α είναι ανάλογη του ύψους του 
πάνω από το οριζόντιο δάπεδο. 
Αφού υΑ = 1,5ωR, από τη σχέση (2) προκύ-
πτει: h = 1,5R.

42. Α. Σωστή επιλογή είναι η α. 

Α

RΚ
ΔΓ

B

t1

υcmυcm

υ

υcm

υcm υB

υ

υ

Επειδή το νήμα είναι μη εκτατό και δεν ολι-
σθαίνει στην περιφέρεια του δίσκου, ισχύει:
 

     ή  


  0   ή   

 
cm
  0   

ή  υcm – υ = 0  ή  υcm = υ  ή  υcm = ωR  

ή  d

dt

d

dt
R

cm
    ή  αcm = αγωνR.

B. Σωστή επιλογή είναι η α.
Για το σημείο Β ισχύει:   

  
B cm
  ,  όπου 



  η γραμμική ταχύτητα του σημείου Β. Επει-

δή τα διανύσματα υ
cmcm

 και    είναι κάθετα 

μεταξύ τους, είναι:   
B cm
  2 2

( )  

ή    
B

R R ( ) ( )
2 2   ή   

B
R 2   

ή   
B cm
 2   ή   

cm B
 2

2
 (1).

Έστω   η ταχύτητα του σημείου Δ. Είναι: 
  

     
cm

 (2), όπου    η γραμμική τα-
χύτητα του σημείου Δ. Επειδή τα διανύσματα 


υ
cmcm

 και    έχουν την ίδια φορά, η σχέση (2) 
γράφεται:      

cm
  ή  υΔ = ωR + ωR  

ή  υΔ = 2ωR  ή  υΔ = 2υcm ή, λόγω της σχέσης 

(1): υΔ = 2 υΒ.

43. Α. Σωστή επιλογή είναι η α.
Για τον δίσκο Δ1 κάθε χρονική στιγμή ισχύει:

Α

Δ1

R
N

υ

υcm(1)υcm(1)

(1)
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 

     ή   



 
cm( )1

0    ή   
cm( )1

0    

ή  υcm(1) = ω1R  ή  
d

dt

d

dt
R

cm
 ( )1 1   

ή  αcm(1) = αγων(1)R (1).

Για τον δίσκο Δ2 κάθε χρονική στιγμή ισχύει:

Β

Δ2

R
Δ r

υcm(2)
υcm(2)

υ

(2)

 

     ή   



 
cm( )2

0    ή   
cm( )2

0   

ή  υcm(2) = ω2r  ή  
d

dt

d

dt
r

cm
 ( )2 2   

ή  αcm(2) = αγων(2)r  ή   cm

R

( ) ( )2 2
2

  (2).

Με διαίρεση κατά μέλη των σχέσεων (1) και 
(2) προκύπτει: 











cm

cm

( )

( )

( )

( )

1

2

1

2

2
   ή  αγων(2) = αγων(1) (3).

Β. Σωστή επιλογή είναι η α.

Είναι:  
1

1

2
 


  ή  

1

1 1

21

2

2






( )
t

 (4) και

 
2

2

2
 


  ή  2

2 1

21

2

2






( )
t

 (5).

Με διαίρεση κατά μέλη των σχέσεων (4) και 

(5) προκύπτει: 


1

2

1

2









( )

( )

 ή, λόγω της σχέ-

σης (3): N
N
1

2

1= .

Γ. Σωστή επιλογή είναι η γ.

Είναι: 
1 1
 R  (6) και 

2 2
 r   

ή  
2 2

2
 R   (7). Με διαίρεση κατά μέλη των 

σχέσεων (6) και (7) προκύπτει: 


1

2

1

2

2 




ή  


1

2

1 1

2

2 1

2

2

1

2

1

2










( )

( )

t

t

  ή  


1

2

1

2

2







( )

( )

 ή, λόγω 

της σχέσης (3): ��
��

1

2

2= .

44. Α. Σωστή επιλογή είναι η α.
Έστω υcm(1) και υcm(2) οι ταχύτητες των κέντρων 
μάζας των δίσκων (1) και (2) αντίστοιχα τη 
χρονική στιγμή t1.

(1)

B

(2)

R2 = R

R1 = 2R

Κ2

Κ1

υcm(2)

υcm(2)

υ υcm(1)

Επειδή ο δίσκος (1) κυλίεται χωρίς να ολισθαί-
νει, ισχύει: υcm(1) = ω1R1  ή  υcm(1) = 2ω1R.
Επειδή ο δίσκος (2) κυλίεται χωρίς να ολισθαί-
νει, ισχύει: υcm(2) = ω2R2  ή  υcm(2) = ω2R.
Το μέτρο   της ταχύτητας του ανώτατου ση-
μείου Β του δίσκου (2) τη χρονική στιγμή t1 
είναι: υΒ = 2υcm(2)  ή  υΒ = 2ω2R.
Επειδή το νήμα είναι μη εκτατό και δεν ολι-
σθαίνει στην περιφέρεια του δίσκου (2),  
ισχύει: υcm(1) = υΒ  ή  2ω1R = 2ω2R  ή  ω2 = ω1.

Β. Σωστή επιλογή είναι η α.
Είναι: ω1 = αγων(1)t1 (1) και ω2 = αγων(2)t1 (2). 

Επειδή είναι ω1 = ω2, από τις σχέσεις (1) και 
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(2) προκύπτει ότι αγων(1) = αγων(2). Το πλήθος των 

περιστροφών που εκτελεί ο δίσκος (1) είναι:

 
1

1

2
 


  ή  

1

1 1

21

2

2






( )
t

 (3).

Το πλήθος των περιστροφών που εκτελεί ο δί-
σκος (2) από τη χρονική στιγμή t = 0 έως τη 
χρονική στιγμή t1 είναι:

 
2

2

2
 


  ή  

2

2 1

21

2

2






( )
t

 (4).

Με διαίρεση κατά μέλη των σχέσεων (3) και 

(4) προκύπτει:  


1

2

1

2









( )

( )

  ή  Ν2 = Ν1.

Γ. Σωστή επιλογή είναι η γ.
Το διάστημα που διανύει ο δίσκος (1) από τη 
χρονική στιγμή t = 0 έως τη χρονική στιγμή t1 

δίνεται από τη σχέση: s t
cm

 1

2
1 1

2
( )

 (5). Επει-

δή ο δίσκος (1) κυλίεται χωρίς να ολισθαίνει, 
ισχύει: αcm(1) = αγων(1)2R, οπότε η σχέση (5)  

γράφεται: s Rt ( )1 1

2  (6). Το μήκος του 

νήματος που ξετυλίγεται από την περιφέρεια 
του δίσκου (2) από τη χρονική στιγμή t = 0 
έως τη χρονική στιγμή t1 είναι:   R

2
  ή  

  R t
1

2
2 1

2( )
  ή    1

2
2 1

2( )
Rt  (7). Με 

διαίρεση κατά μέλη των σχέσεων (6) και (7) 

προκύπτει: s



= 2   ή  = s
2

.

45. Α. Σωστή επιλογή είναι η γ.
Η ταχύτητα υ  του σώματος Σ τη χρονική 
στιγμή t1 είναι ίση με τη γραμμική ταχύτητα 


  του σημείου επαφής Ζ του νήματος με την 
περιφέρεια του κυλίνδρου την ίδια χρονική 
στιγμή. Έστω ω η γωνιακή ταχύτητα του κα-

ρουλιού τη χρονική στιγμή t1. Είναι:      ή  
υ = ωR2  ή  υ = ωR (1). Επειδή οι δίσκοι κυλίο-
νται χωρίς να ολισθαίνουν πάνω στις σανίδες, 
ισχύει: υcm = ωR1  ή  υcm = 2ωR (2).
Από τις σχέσεις (1) και (2) προκύπτει:
υcm = 2υ (3).

Β. Σωστή επιλογή είναι η α.

Από τη σχέση (3) έχουμε: d

dt

d

dt

cm
  2   

ή  αcm = 2α (4).

Είναι: h t 1

2
1

2  (5) και s t
cm

 1

2
1

2  (6). Με 

διαίρεση κατά μέλη των σχέσεων (5) και (6) 

προκύπτει: h

s
cm

 


 ή, λόγω της σχέσης (4):

s = 2h.

46. Α. Σωστή επιλογή είναι η β.
Έστω υΣ το μέτρο της ταχύτητας του σώματος 
Σ μια τυχαία χρονική στιγμή t και υcm το μέτρο 
της ταχύτητας του κέντρου μάζας του δίσκου 
την ίδια χρονική στιγμή.

R
r d

Κ

Ζ

Σ

Δυ υ

υ
υcm

υcm

υΣ

Έστω ω το μέτρο της γωνιακής ταχύτητας του 
δίσκου τη χρονική στιγμή t και ωτ το μέτρο 
της γωνιακής ταχύτητας της τροχαλίας την 
ίδια χρονική στιγμή. Επειδή το νήμα είναι μη 
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εκτατό και δεν ολισθαίνει στο αυλάκι της τρο-
χαλίας, ισχύει:
 

     ή  υΣ = υ  ή  υΣ = ωτd  ή  d

dt

d

dt
d

     

ή  αΣ = αγων(τ)d  ή      ( )

R

2
 (1). 

Επειδή το νήμα είναι μη εκτατό και δεν ολι-
σθαίνει στην περιφέρεια της κυκλικής εγκοπής 
και στο αυλάκι της τροχαλίας, ισχύει:  

     
ή    

  
cm
     ή    

cm
    (2), όπου   

το μέτρο της γραμμικής ταχύτητας του σημεί-
ου Ζ και   το μέτρο της γραμμικής ταχύτητας 
του σημείου Δ που φαίνονται στο προηγούμε-
νο σχήμα. Είναι:   r (3) και   d (4).
Επειδή ο δίσκος κυλίεται χωρίς να ολισθαίνει 
στο οριζόντιο δάπεδο, είναι υcm = ωR (5). Η 
σχέση (2), λόγω των σχέσεων (3), (4) και (5) 
γράφεται: ωR + ωr = ωτd  ή  ω(R + r) = ωτd   

ή  3

2

1

2
 R R   ή  3ω = ωτ (6).

Παραγωγίζοντας τη σχέση (6), προκύπτει: 

3
d

dt

d

dt

    ή  3αγων = αγων(τ)  ή  



  ( )

3
 

(7), όπου αγων το μέτρο της γωνιακής επιτάχυν-
σης του δίσκου.
Επειδή ο δίσκος κυλίεται χωρίς να ολισθαίνει 

ισχύει: αcm = αγωνR  ή   
 

cm

R
 (8). Από τη 

σχέση (1) προκύπτει:  
 ( )

 2 

R
 (9). 

Η σχέση (7), λόγω των σχέσεων (8) και (9) 

γράφεται:  
cm

R R
 2

3

   ή  αcm =
2
3

αΣ.

Β. Σωστή επιλογή είναι η γ.

Είναι:  
1

1

2
 


  ή  


1

21

2

2






 ( )t

 (10)

και  
2

2

2
 


  ή  


2

21

2

2






 ( )
( )t

 (11). 

Με διαίρεση κατά μέλη των σχέσεων (10) και 

(11) προκύπτει: 


1

2







( )t

 ή, λόγω της σχέ-

σης (7): 



1

2

1

3
   ή  Ν2 = 3Ν1.

Γ. Σωστή επιλογή είναι η α.

Είναι h t 1

2

2 ( )  (12). Το μήκος   του 

νήματος που ξετυλίγεται από την περιφέρεια 
της κυκλικής εγκοπής σε χρόνο Δt δίνεται 

από τη σχέση:   r
1
  ή    R

t
2

1

2

2 ( )  

ή, λόγω της σχέσης (8):   1

4

2
R

R
t

cm


( )   ή  

  1

4

2
cm

t( )  (13). Με διαίρεση κατά μέλη 

των σχέσεων (12) και (13) προκύπτει: 

h

cm


 2


   ή  h



 2

2

3









  ή, επειδή είναι 

αcm = (2/3)αΣ (Α. ερώτημα), h



= 3   ή  = h
3

.

47. Σωστή επιλογή είναι η β. 
Επειδή η σανίδα δεν ολισθαίνει σε σχέση με 
τους τροχούς, η ταχύτητά της υ  είναι ίση με 
την ταχύτητα του ανώτατου υλικού σημείου 
κάθε τροχού. Επομένως, είναι:  

 
( )1

  ή 

υ = ω1R1 (1) και  

 
( )2

  ή  υ = υανωτ(2)  ή 

υ = 2υcm  ή  υ = 2ω2R2 (2), όπου ω1 και ω2 εί-
ναι τα μέτρα των γωνιακών ταχυτήτων των 
τροχών (1) και (2) αντίστοιχα. Από τις σχέ-
σεις (1) και (2) προκύπτει: ω1R1 = 2ω2R2  ή   
ω1R1 = 2λR1ω2  ή  ω1 = 2λω2 (3). 
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Το πλήθος των περιστροφών που εκτελεί ο 
τροχός (1) σε χρόνο t δίνεται από τη σχέση: 

 
1

1

2
 


  ή  

1

1

2
 


t  (4).

Το πλήθος των περιστροφών που εκτελεί ο 
τροχός (2) σε χρόνο t δίνεται από τη σχέση: 

 
2

2

2
 


  ή  2

2

2
 


t

 (5). Με διαίρεση 

κατά μέλη των σχέσεων (4) και (5) προκύπτει: 




1

2

1

2

 


 ή, λόγω της σχέσης (3): N
N
1

2

= 2λ.
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48. α. Είναι: υcm = ωR  ή  υcm = 12 m/s.
β. Η γωνία στροφής του τροχού από τη χρονι-
κή στιγμή t = 0 έως τη χρονική στιγμή t1 είναι: 
Δθ = ωΔt  ή  Δθ = 240 rad. Το πλήθος των  
περιστροφών που εκτελεί ο τροχός στο παρα-

πάνω χρονικό διάστημα είναι N  
2

  

ή  Ν = (120/π) περιστροφές.

γ. Είναι: υανωτ = 2υcm  ή  υανωτ = 24 m/s

και υκατ = 0.

49. α. Είναι: 
cm

s

t
   ή  υcm = 20 m/s.

β. Είναι: υcm = ωR  ή  ω = 40 rad/s.

γ. Έστω το υλικό σημείο Α της περιφέρειας 
του τροχού που φαίνεται στο ακόλουθο σχή-
μα. Το υλικό σημείο Α έχει τη χρονική στιγμή 
t1 ταχύτητα υ

cm
,  λόγω της μεταφορικής κί-

νησης του τροχού, και ταχύτητα υ, λόγω της 
στροφικής κίνησης του τροχού.

A
R

α
A

υ
cm

υ

Η ταχύτητα του σημείου Α τη χρονική στιγμή 
t1 δίνεται από τη σχέση:   

    
cm

 (1).
Επειδή οι ταχύτητες υ

cm
 και υ  είναι κάθετες 

μεταξύ τους, το μέτρο της ταχύτητας του ση-
μείου Α τη χρονική στιγμή t1 είναι:

    
cm

2 2   ή     2
cm

 

ή  υΑ = 20 2 m s/ .

δ. Είναι:   
2

  ή    

t

2
  

ή  N = (200/π) περιστροφές.

50. α. Είναι: αcm = αγωνR  ή  αcm = 4 m/s2.

β. Είναι: υcm = αcmt1  ή  υcm = 20 m/s.

γ. Είναι:  x t
cm

  1

2

2   ή  Δx = 50 m.

δ. Η μετατόπιση Δx1 του κέντρου μάζας του 
δίσκου από τη χρονική στιγμή t = 0 έως τη 

χρονική στιγμή t2 είναι: x t
cm1

2

2

1

2
 

ή  Δx1 = 8 m.
Η μετατόπιση Δx2 του κέντρου μάζας του δί-
σκου από τη χρονική στιγμή t = 0 έως τη χρο-

νική στιγμή t3 είναι: x t
cm2

2

3

1

2
 

ή  Δx2 = 32 m.
Συνεπώς, η μετατόπιση  x  του κέντρου μά-
ζας του δίσκου από τη χρονική στιγμή t2 έως 
τη χρονική στιγμή t3 είναι     x x x

2 1
  

ή    x m24 .

Ισχύει:   x R    ή   
  x

R

ή  Δθ = 120 rad.

51. α. Επειδή οι τροχοί κυλίονται χωρίς να 
ολισθαίνουν, ισχύει:
υανωτ = 2υcm  ή  υcm = 10 m/s.

β. Είναι: υcm = αcmt1  ή  αcm = 2,5 m/s2.

γ. Είναι:   s

R2
  ή   

1

2

2

1

2



cm
t

R
  

ή  N = (20/π) περιστροφές.
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δ. Είναι: αανωτ = 2αcm  ή  αανωτ = 5 m/s2   
και  ακατ = 0.

52. α. Επειδή ο δίσκος κυλίεται χωρίς να ολι-
σθαίνει, ισχύει: υcm(0) = ω0R  ή  υcm(0) = 10 m/s.

β. Ισχύει: ω1 = ω0 + αγωνt1  ή  
 

 


1 0

1
t

ή  αγων = 10 rad/s2.

Επειδή ο δίσκος κυλίεται χωρίς να ολισθαίνει, 
ισχύει: αcm = αγωνR  ή  αcm = 5 m/s2.

γ. Είναι:    
0 1 1

2
1

2
t t   ή  Δθ = 60 rad.

δ. Είναι: s = RΔθ  ή  s = 30 m.

53. α. Έστω αcm το μέτρο της επιβράδυνσης 
του κέντρου μάζας του δίσκου. Η χρονική εξί-
σωση του μέτρου της ταχύτητας του κέντρου 
μάζας του δίσκου δίνεται από τη σχέση:

  
cm cm cm

t  0
 (1).

Από τη σχέση (1) για υcm = 0 και t = t1 προκύ-

πτει: 0
0 1

   
cm cm

t   ή  


cm

cm

t
  0

1

  

ή  αcm = 2 m/s2.

β. Έστω Ν το πλήθος των περιστροφών που 
εκτελεί ο δίσκος στο χρονικό διάστημα από τη 
χρονική στιγμή t = 0 έως τη χρονική στιγμή t1 
και Δx η μετατόπιση του κέντρου μάζας του 
δίσκου σε αυτό το χρονικό διάστημα. Είναι: 

  x

R2
  ή   

  



cm cm
t t

R

0 1 1

21

2

2

ή  Ν = (125/π) περιστροφές.

γ. Έστω υcm(1) το μέτρο της ταχύτητας του κέ-
ντρου μάζας του δίσκου τη χρονική στιγμή  
t = 8 s. Από τη σχέση (1) προκύπτει:
  

cm cm cm
t

(1) (0)
    ή  υcm(1) = 4 m/s. 

Έστω ω το μέτρο της γωνιακής ταχύτητας του 
δίσκου τη χρονική στιγμή t = 8 s. Επειδή ο  
δίσκος κυλίεται χωρίς να ολισθαίνει, ισχύει:
υcm(1) = ωR  ή  ω = 10 rad/s.

δ. Έστω  x  η μετατόπιση του κέντρου μάζας 
του δίσκου από τη χρονική στιγμή t = 0 έως τη 

χρονική στιγμή t2. Ισχύει: N
x

R
 

2

ή    x N R2   ή    
cm cm

t t R
0 2 2

2
1

2
2    

ή  t t
2

2

2
20 64 0    (S.I.) (2).

Οι λύσεις της εξίσωσης (2) είναι:
t2 = 16 s και t2 = 4 s.
Επειδή ο δίσκος δεν έχει ακινητοποιηθεί ακό-
μα, δεκτή λύση είναι η: t2 = 4 s.
Έστω υcm(2) το μέτρο της ταχύτητας του κέ-
ντρου μάζας του δίσκου τη χρονική στιγμή t2. 
Από τη σχέση (1) έχουμε:
  

cm cm cm
t

(2)
  0 2

  ή  υcm(2) = 12 m/s.

54. α. Τη χρονική στιγμή t = 0 είναι 
 

cm
R

(0)


0
.  Συνεπώς, ο δίσκος κυλίεται 

ολισθαίνοντας.
β. Έστω   το μέτρο της ταχύτητας του ανώ-
τατου σημείου Α του δίσκου τη χρονική στιγ-
μή t = 0. Είναι:   

    
cm( )

,
0 0

  όπου υ0  η 
γραμμική ταχύτητα του σημείου Α τη χρονική 
στιγμή t = 0. Επειδή τα διανύσματα υ

cm(0)
 και 



υ0  στο σημείο Α τη χρονική στιγμή t = 0 έχουν 
την ίδια φορά, το μέτρο υΑ της ταχύτητας του 
ανώτατου σημείου του δίσκου υπολογίζεται 
από τη σχέση: υΑ = υcm(0) + υ0  

ή  υΑ = υcm(0) + ω0R  ή  υΑ = 18 m/s.

Έστω   το μέτρο της ταχύτητας του κατώτα-
του σημείου Β του δίσκου τη χρονική στιγμή 
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t = 0. Είναι:   

     
cm( )0 0

 όπου  0  η γραμ-
μική ταχύτητα του σημείου Β τη χρονική στιγ-
μή t = 0. Επειδή τα διανύσματα υ

cm( )0
 και  0  

στο σημείο Β, τη χρονική στιγμή t = 0, έχουν 
αντίθετη φορά, το μέτρο υΒ της ταχύτητας του 
κατώτατου σημείου Β του δίσκου τη χρονική 
στιγμή t = 0 είναι:      

cm( )0 0

ή      
cm

R
( )0 0

  ή  υΒ = 2 m/s.

K

Α

R

R

Β

υ0 υΑ

υΒ

υcm(0)

υcm(0)

υ0

γ. Σύμφωνα με την εκφώνηση είναι: 
d

dt
rad s

  2
2

/   ή  αγων = 2 rad/s2.

Έστω ω το μέτρο της γωνιακής ταχύτητας του 
δίσκου τη χρονική στιγμή t1 και υcm το μέτρο 
της ταχύτητας του κέντρου μάζας του δίσκου 
την ίδια χρονική στιγμή.
Επειδή ο δίσκος τη χρονική στιγμή t1 αρχίζει 
να κυλίεται χωρίς να ολισθαίνει, ισχύει:
 

cm
R   ή  υcm(0) = (ω0 + αγωνt1)R  ή  t1 = 5 s.

55. α. Επειδή ο τροχός κυλίεται χωρίς να ολι-
σθαίνει, το μέτρο υΑ της ταχύτητας του ανώτα-
του σημείου Α του τροχού τη χρονική στιγμή 
t1 είναι: υΑ = 2υcm  ή  υcm = 24 m/s,
όπου υcm το μέτρο της ταχύτητας του κέντρου 
μάζας του τροχού τη χρονική στιγμή t1. 
Έστω αcm το μέτρο της επιτάχυνσης του κέ-
ντρου μάζας του τροχού. Είναι:
υcm = αcmt1  ή  αcm = 6 m/s2.

β. Επειδή ο τροχός κυλίεται χωρίς να ολισθαί-
νει, ισχύει: αcm = αγωνR  ή  αγων = 10 rad/s2.

γ. Έστω Δθ η γωνία στροφής του τροχού από τη 
χρονική στιγμή t = 0 έως τη χρονική στιγμή t1. 

Είναι:   1

2
1

2
t   ή  Δθ = 80 rad.

Το πλήθος των περιστροφών που εκτελεί ο 
τροχός από τη χρονική στιγμή t = 0 έως τη 
χρονική στιγμή t1 υπολογίζεται από τη σχέση: 

  
2

  ή  Ν = (40/π) περιστροφές.

δ. Έστω Δx η μετατόπιση του κέντρου μάζας 
του τροχού από τη χρονική στιγμή t = 0 έως 
τη χρονική στιγμή t1. Επειδή ο τροχός κυλίεται 
χωρίς να ολισθαίνει, ισχύει:
Δx = RΔθ  ή  Δx = 48 m.
Το ύψος h του κεκλιμένου επιπέδου υπολογί-

ζεται από τη σχέση:   h

x
  ή  h = 24 m.

56. α. Είναι: αcm = αγωνR  ή  αcm = 5 m/s2.

β. Το ανώτερο σημείο Ζ του δίσκου τη χρονική 
στιγμή t1 έχει: την επιτρόχια επιτάχυνση  ,
την κεντρομόλο επιτάχυνση   και την επιτά-
χυνση του κέντρου μάζας α

cm
.  Τα διανύσματα 

των τριών επιταχύνσεων έχουν σχεδιαστεί στο 
παρακάτω σχήμα.

Z

R
t1

αcm

ακ

αε

Η επιτάχυνση   του σημείου Ζ τη χρονική 
στιγμή t1 ισούται με το διανυσματικό άθροι-
σμα των επιταχύνσεων �� ,



  και α
cm

.  
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Δηλαδή είναι:    

       
cm

.

Το μέτρο της επιτρόχιας επιτάχυνσης του ση-
μείου Ζ είναι σταθερό και υπολογίζεται από τη 
σχέση: αε = αγωνR  ή  αε = 5 m/s2.
Έστω ω1 το μέτρο της γωνιακής ταχύτητας του 
δίσκου τη χρονική στιγμή t1. Είναι: ω1 = αγωνt1  
ή  ω1 = 10 rad/s. Το μέτρο της κεντρομόλου 
επιτάχυνσης του σημείου Ζ τη χρονική στιγμή 
t1 υπολογίζεται από τη σχέση:
   1

2
R   ή  ακ = 50 m/s2.

Για να βρούμε την επιτάχυνση  ,  βρίσκου-

με πρώτα τη συνισταμένη ( )


  των επιτα-

χύνσεων α
cm

 και  .  Είναι:   

    
cm

.  

Επειδή τα διανύσματα α
cm

 και   έχουν την 

ίδια φορά, το μέτρο της επιτάχυνσης ������  εί-

ναι: αεφαπτ = αε + αcm  ή  αεφαπτ = 10 m/s2.

Η επιτάχυνση ��  είναι ίση με το διανυσματι-
κό άθροισμα της εφαπτομενικής επιτάχυνσης 


������  και της κεντρομόλου επιτάχυνσης �� :  
  

    
cm

.

Z

Κ

αcm

ακ

αε αεφαπτ

αΖ

Επειδή τα διανύσματα ������  και ��  είναι κά-
θετα μεταξύ τους, το μέτρο της επιτάχυνσης 


  υπολογίζεται από τη σχέση:

     2 2   ή  αΖ = 10 26 2m s/ .

γ. Έστω scm το διάστημα που διανύει το κέντρο 
μάζας του δίσκου από τη χρονική στιγμή t = 0 
έως τη χρονική στιγμή t1. Είναι:

s t
cm cm

 1

2
1

2   ή  scm = 2,5 m.

δ. Έστω αΑ το μέτρο της επιτάχυνσης του 
άκρου Α του νήματος. Επειδή το νήμα δεν ολι-
σθαίνει στο αυλάκι του δίσκου, η ταχύτητα  
του άκρου Α του νήματος είναι κάθε χρονική 
στιγμή ίση με την ταχύτητα του ανώτερου ση-
μείου του δίσκου. Δηλαδή είναι:  

   2
cm

  

ή  υΑ = 2υcm  ή  d

dt

d

dt

cm
   2   ή  αΑ = 2αcm

ή  αΑ = 10 m/s2.

Έστω sA το διάστημα που διανύει το άκρο 
Α του νήματος από τη χρονική στιγμή t = 0  

έως τη χρονική στιγμή t1. Είναι: s t
A
 1

2
1

2

ή  sA = 5 m.

ε. Είναι: υΑ = 2υcm  ή  υΑ = 2αcmt2  ή  υΑ = 20 m/s.

57. α. Έστω υcm το μέτρο της ταχύτητας  
του κέντρου μάζας του δίσκου τη χρονική 
στιγμή t1. Το μέτρο της ταχύτητας ενός υλικού 
σημείου Α της περιφέρειας του δίσκου που 
απέχει απόσταση d = R από το δάπεδο είναι:
   2

cm
  ή  υcm = 8 m/s.

β. Έστω υcm(0) το μέτρο της ταχύτητας του κέ-
ντρου μάζας του δίσκου τη χρονική στιγμή t = 0.
Είναι: υcm(0) = ω0R  ή  υcm(0) = 4 m/s. Έστω αcm 
το μέτρο της επιτάχυνσης του κέντρου μάζας 
του δίσκου. 
Είναι: υcm = υcm(0) + αcmΔt, όπου Δt το χρονικό 
διάστημα από τη χρονική στιγμή t = 0 έως τη 
χρονική στιγμή t1 = 2 s,  ή  αcm = 2 m/s2.

γ. Έστω αγων το μέτρο της γωνιακής επιτάχυν-
σης του δίσκου. Ισχύει: αcm = αγωνR  
ή  αγων = 5 rad/s2. Έστω Δθ η γωνία στροφής 
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του δίσκου από τη χρονική στιγμή t = 0 έως τη 

χρονική στιγμή t1. Είναι:    
0 1 1

2
1

2
t t   

ή  Δθ = 30 rad.

Το πλήθος των περιστροφών που εκτελεί ο δί-
σκος από τη χρονική στιγμή t = 0 έως τη χρο-

νική στιγμή t1 είναι:   
2

ή  Ν = (15/π) περιστροφές.

δ. Έστω ω το μέτρο της γωνιακής ταχύτητας του 
δίσκου τη χρονική στιγμή t1. Είναι: υcm = ωR  ή  
ω = 20 rad/s. Το σημείο Β τη χρονική στιγμή 
t1 έχει γραμμική ταχύτητα υ,  λόγω της στρο-
φικής κίνησης του δίσκου, και ταχύτητα υ

cm
 

λόγω της μεταφορικής κίνησης του δίσκου. 
Έστω   η ταχύτητα του σημείου Β τη χρο-
νική στιγμή t1.

K
BrB υcm

υBυ

R

Είναι:   

    
cm

.

Το μέτρο της γραμμικής ταχύτητας του ση-
μείου Β τη χρονική t1 υπολογίζεται από τη 
σχέση: υ = ωrB  ή  υ = 6 m/s.

Επειδή τα διανύσματα υ
cmcm

 και υ  είναι κάθε-
τα μεταξύ τους, το μέτρο της ταχύτητας του 
σημείου Β τη χρονική στιγμή t1 υπολογίζεται 

από τη σχέση:     
cm

2 2   ή  υΒ = 10 m/s.

58. α. Έστω Δθ η γωνία στροφής του κυλίν-
δρου από τη χρονική στιγμή t = 0 έως τη χρονι-

κή στιγμή t1. Είναι:   R   ή  Δθ = 160 rad.
Έστω αγων το μέτρο της γωνιακής επιτάχυνσης 
του κυλίνδρου. Είναι:

  
1

2

2
( )t   ή   

1

2
1

2
t

ή   
 

2

1

2


t

  ή  αγων = 20 rad/s2.

β.	 Η ταχύτητα   του άκρου Α του νήματος 
τη χρονική στιγμή t1 είναι ίση με την ταχύτητα 


  του ανώτερου σημείου του κυλίνδρου την 
ίδια χρονική στιγμή.

R

Δ A υΑυΔυcm υ

Είναι:  

     ή    

    
cm

 (1), όπου υ
cm

 
η ταχύτητα του σημείου Δ τη χρονική στιγμή 
t1, λόγω της μεταφορικής κίνησης του κυλίν-
δρου, και υ  η γραμμική ταχύτητα του σημείου 
Δ την ίδια χρονική στιγμή, λόγω της στροφικής 
κίνησης του κυλίνδρου. Επειδή τα διανύσματα 


υ
cm

 και υ  έχουν την ίδια φορά, η σχέση (1) 
γράφεται: υΑ = υcm + υ  ή  υΑ = 2υcm (2).
Έστω αcm το μέτρο της επιτάχυνσης του κέ-
ντρου μάζας του κυλίνδρου τη χρονική στιγμή 
t1. Είναι: αcm = αγωνR  ή  αcm = 4 m/s2.
Το μέτρο της ταχύτητας του κέντρου μάζας 
του κυλίνδρου τη χρονική στιγμή t1 υπολογί-
ζεται από τη σχέση: υcm = αcmt1  ή  υcm = 16 m/s.
Με αντικατάσταση των τιμών των μεγεθών 
στη σχέση (2) προκύπτει: υΑ = 32 m/s.
γ.	 Έστω αΑ το μέτρο της επιτάχυνσης του 
άκρου Α του νήματος. Παραγωγίζοντας τη 
σχέση (2) προκύπτει:
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d

dt

d

dt

cm
   2   ή  αΑ = 2αcm  ή  αΑ = 8 m/s2.

Το διάστημα που διανύει το άκρο Α του νήμα-
τος από τη χρονική στιγμή t = 0 έως τη χρονι-
κή στιγμή t1 υπολογίζεται από τη σχέση:

s t
A
 1

2

2 ( )    ή   s t
A
 1

2
1

2

ή   sA = 64 m.

δ.	 Έστω το υλικό σημείο Β της περιφέρειας 
του κυλίνδρου που φαίνεται στο ακόλουθο 
σχήμα, το οποίο τη χρονική στιγμή t1 απέχει 
απόσταση d = R από το οριζόντιο δάπεδο. Η 
ταχύτητα του σημείου Β τη χρονική στιγμή t1 
δίνεται από τη σχέση:   

     
cm

, όπου    
η γραμμική ταχύτητα του σημείου Β. Επειδή 
οι ταχύτητες υ

cm
 και    είναι κάθετες μεταξύ 

τους, έχουμε: 

     
cm

2 2
( )   ή     2

2

cm
 

ή     2
cm

  ή  υΒ = 16 2 m s/ .

B

R
υcm

υΒυ

59. α. Είναι: αcm = αγωνR  ή  αcm = 4 m/s2.

β. Η ταχύτητα   του άκρου Α του νήματος 
τη χρονική στιγμή t1 είναι ίση με τη γραμμι-
κή ταχύτητα υ  του σημείου Ζ του δίσκου που 
φαίνεται στο επόμενο σχήμα. Συνεπώς, είναι: 
υΑ = υ  ή  υΑ = ωR (1), όπου ω το μέτρο της 
γωνιακής ταχύτητας του δίσκου τη χρονική 
στιγμή t1. Είναι: ω = αγωνt1  ή  ω = 20 rad/s.

A

R
KZ

υ
υcm

υΑ

Συνεπώς, από τη σχέση (1) προκύπτει:
υΑ = 4 m/s.
γ. Έστω αΑ το μέτρο της επιτάχυνσης του 

άκρου Α του νήματος. Είναι: υΑ = υ  ή, παρα-

γωγίζοντας: d

dt

d

dt

     ή  d

dt

d R

dt

   ( )

ή  d

dt
R

d

dt

     ή  αΑ = Rαγων  ή  αΑ = 4 m/s2.

Έστω ΔxA η μετατόπιση του άκρου Α του  
νήματος από τη χρονική στιγμή t = 0 έως τη 
χρονική στιγμή t1.

Είναι:  x t
A
 1

2
1

2   ή  ΔxA = 2 m.

δ. Είναι: h t 1

2
2

2   ή  t2 = 2 s.

Έστω υcm το μέτρο της ταχύτητας του κέντρου 
μάζας του δίσκου τη χρονική στιγμή t2. Είναι: 
υcm = αcmt2  ή  υcm = 8 m/s. Το μέτρο της ταχύ-
τητας του ανώτερου σημείου Β του δίσκου τη 
χρονική στιγμή t2 είναι: 

υΒ = 2υcm  ή  υΒ = 16 m/s.

60. α. Έστω ότι το υλικό σημείο Β στο οποίο 
εφάπτεται ο δίσκος με το νήμα, έχει τη χρονική 
στιγμή t1 ταχύτητα υ

cm
, λόγω της μεταφορικής 

κίνησης του δίσκου, και γραμμική ταχύτητα υ, 
λόγω της στροφικής κίνησης του δίσκου, όπως 
φαίνεται στο επόμενο σχήμα.



2.2 Οι κινήσεις των στερεών σωµάτων: Σύνθετη κίνηση στερεού σώµατος

133

R
B

A
υΑ

υcm

υ

Επειδή το νήμα είναι μη εκτατό και δεν ολι-
σθαίνει στο αυλάκι του δίσκου, ισχύει:  

     
ή  υΑ = υ  ή  υΑ = ωR (1), όπου ω το μέτρο της 
γωνιακής ταχύτητας του δίσκου τη χρονική 
στιγμή t1. Είναι: ω = αγωνt1  ή  ω = 10 rad/s.
Με αντικατάσταση των τιμών των μεγεθών 
στη σχέση (1), έχουμε: R = 0,5 m.

β.	 Έστω Δθ η γωνία στροφής του δίσκου στο 
χρονικό διάστημα Δt, από τη χρονική στιγμή  
t = 0 έως τη χρονική στιγμή t1. Είναι:

  
1

2

2
( )t   ή   

1

2
1

2
t

ή  Δθ = 25 rad.
Το μήκος του νήματος που έχει ξετυλιχθεί από 
τον δίσκο από τη χρονική στιγμή t = 0 έως τη 
χρονική στιγμή t1 δίνεται από τη σχέση:
  R   ή   = 12,5 m.

γ.	 Έστω αcm το μέτρο της επιτάχυνσης του κέ-
ντρου μάζας του δίσκου. Έχουμε:
αcm = αγωνR  ή  αcm = 1 m/s2.

Το διάστημα που διανύει το κέντρο μάζας του 
δίσκου από τη χρονική στιγμή t = 0 έως τη 
χρονική στιγμή t1 είναι:

s t
cm cm

 1

2
1

2   ή  scm = 12,5 m.

δ.	 Έστω  
cm

 το μέτρο της ταχύτητας του κέ-
ντρου μάζας του δίσκου τη χρονική στιγμή t2. 
Είναι:   

cm cm
t

2
  ή   

cm
m s2 / .

Έστω   η γραμμική ταχύτητα του σημείου 
Β τη χρονική στιγμή t2. Επειδή τα διανύσματα 
των ταχυτήτων  

cm
 και    που έχει το σημείο 

Β τη χρονική στιγμή t2 είναι κάθετα μεταξύ 

τους, το μέτρο της ταχύτητας του σημείου Β  

τη χρονική στιγμή t2 είναι:      ( ) ( )
cm

2 2   

ή     2
cm

  ή  υΒ = 2 2 m/s.

61. α. Τη χρονική στιγμή t το σημείο επαφής 
Β του νήματος με τον δίσκο έχει ταχύτητα υ

cm
, 

λόγω της μεταφορικής κίνησης του δίσκου, 
και γραμμική ταχύτητα υ, λόγω της στροφι-
κής κίνησης του δίσκου, όπως φαίνεται στο 
παρακάτω σχήμα.

Α

RΚ
ΔB

υcmυcm υcm

υ

υ

Το μέτρο της ταχύτητας   του δίσκου τη 
χρονική στιγμή t δίνεται από τη σχέση: 
    

cm
 (1).

Επειδή το νήμα είναι μη εκτατό και δεν ολι-
σθαίνει στο αυλάκι του δίσκου, ισχύει: υΒ = υΑ  
ή  υΒ = 0.
Συνεπώς, από τη σχέση (1) προκύπτει:
0   

cm
  ή  υcm = υ  ή  υcm = ωR (2).

Έστω αcm το μέτρο της επιτάχυνσης του κέ-
ντρου μάζας του δίσκου. Από τη σχέση (2) πα-
ραγωγίζοντας, προκύπτει:
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d

dt

d R

dt

cm
  ( )   ή   

cm

d

dt
R   

ή  αcm = αγωνR  ή   
 

cm

R
  

ή  αγων = (40/3) rad/s2.

β. Είναι: h t
cm

 1

2
1

2   ή  t
h

cm

1

2


  

ή  t1 = 0,6 s.

Έστω ω1 το μέτρο της γωνιακής ταχύτητας του 
δίσκου τη χρονική στιγμή t1.
Είναι: ω1 = αγωνt1  ή  ω1 = 8 rad/s.

γ. Το μέτρο της ταχύτητας του κέντρου μάζας 
του δίσκου τη χρονική στιγμή t1 υπολογίζεται 
από τη σχέση: υcm = αcmt1  ή  υcm = 4 m/s.

Το μέτρο της ταχύτητας του σημείου Β τη χρο-
νική στιγμή t1 είναι υΒ = 0.
Έστω   η ταχύτητα του σημείου Δ τη χρονι-
κή στιγμή t1. Είναι:   

     
cm

.  Επειδή τα 
διανύσματα υ

cmcm
 και    έχουν την ίδια φορά, 

το μέτρο της ταχύτητας του σημείου Δ τη χρο-
νική στιγμή t1 είναι:      

cm

   

ή  υΔ = υcm + ωR ή, λόγω της σχέσης (2):

υΔ = 2υcm  ή  υΔ = 8 m/s.

δ. Έστω Δθ η γωνία στροφής του δίσκου από 
τη χρονική στιγμή t = 0 έως τη χρονική στιγμή 
t2. Είναι:   R   ή  Δθ = 5,4 rad. Ισχύει:

  1

2
2

2
t   ή  t2 = 0,9 s.

Έστω  
cmcm

 το μέτρο της ταχύτητας του κέ-
ντρου μάζας του δίσκου τη χρονική στιγμή t2. 
Είναι:   

cm cm
t

2
  ή  ′ =υcm 6 m/s.

62. α. Έστω Δθ η γωνία στροφής του δίσκου 
από τη χρονική στιγμή t = 0  έως τη χρονική 
στιγμή t1. Είναι:   R   ή  Δθ = 0,9 rad.

Επειδή ο δίσκος εκτελεί ομαλά επιταχυνόμενη 

στροφική κίνηση, ισχύει:   1

2
1

2
t  (1) και 

ω = αγωνt1 (2). Με διαίρεση κατά μέλη των σχέ-

σεων (1) και (2) προκύπτει: 


 1

2
1

t   

ή  t1 = 0,3 s.
Συνεπώς, από τη σχέση (2) προκύπτει ότι:
αγων = 20 rad/s2.

β. Κάθε χρονική στιγμή ισχύει:

υΒ = υΑ  ή    
cm
     ή   

cm
  0   

ή  υcm = ωR  ή  d

dt

d

dt
R

cm
    

ή  αcm = αγωνR  ή  αcm = (20/3) m/s2.

Α

R
ΚB

υcm υcm

υ

γ. Έστω 
cm

 το μέτρο της ταχύτητας του κέ-
ντρου μάζας του δίσκου τη χρονική στιγμή t2. 
Είναι:   

cm cm
t

2
  ή  ′ =υcm 10 m/s.

δ. Έστω  η ταχύτητα του ανώτατου σημείου 
Δ τη χρονική στιγμή t2. Είναι:   

     
cm

,  
όπου    η γραμμική ταχύτητα του σημείου Δ 
τη χρονική στιγμή t2.
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Α

Κ

Δ

υΔ

t2

υ

υcm

υcm

Επειδή στο σημείο Δ τα διανύσματα υ
cmcm

 και 
   είναι κάθετα μεταξύ τους, το μέτρο της τα-

χύτητας   του σημείου Δ τη χρονική στιγμή 
t2 υπολογίζεται από τη σχέση:

     ( ) ( )
cm

2 2   ή     2
cm

ή  υΔ= 10 2  m/s.

63. α. Ισχύει: h t 1

2
1

2   ή  α = 5 m/s2. 

β. Είναι: α = αγωνR  ή  αγων = 10 rad/s2.  

γ. Είναι: υ1 = αt1  ή  υ1 = 5 m/s.

δ. Από τη χρονική στιγμή t1 και μετά η τροχα-
λία εκτελεί ομαλή στροφική κίνηση. Το μέτρο 
της γωνιακής ταχύτητας της τροχαλίας τη χρο-

νική στιγμή t1 είναι:  
1

1
R

  ή  ω1 = 10 rad/s. 

Το πλήθος των περιστροφών που εκτελεί η 
τροχαλία από τη χρονική στιγμή t = 0 έως τη 
χρονική στιγμή t1 είναι:




1

1

2





  ή  
1

1

21

2

2






t

ή  Ν1 = (2,5/π) περιστροφές.

Το πλήθος των περιστροφών που εκτελεί η 
τροχαλία από τη χρονική στιγμή t1 έως τη χρο-
νική στιγμή t2 είναι: 




2
2

2
�




  ή  
2

1 2 1

2


 


t t
  

ή  Ν2 = (5/π) περιστροφές. 

Συνεπώς, το συνολικό πλήθος των περιστρο-
φών της τροχαλίας είναι: N = N1 + N2

ή  Ν = (7,5/π) περιστροφές.

64. α. Έστω Δθ η γωνία στροφής της τροχα-
λίας στο χρονικό διάστημα Δt, από τη χρονική 
στιγμή t = 0 έως τη χρονική στιγμή t1. Είναι: 

  
2

  ή     2   ή  Δθ = 60 rad.

Η γωνία στροφής της τροχαλίας στο χρονικό 
διάστημα Δt δίνεται από τη σχέση:

  
1

2

2
( )t   ή   

1

2
1

2
t  (1),

όπου αγων το μέτρο της γωνιακής επιτάχυνσης 
της τροχαλίας.
Το μέτρο της γωνιακής ταχύτητας της τροχα­
λίας τη χρονική στιγμή t1 δίνεται από τη σχέ-

ση: ω1 = αγωνt1  ή  t
1

1 


 (2).

Από τη σχέση (1), λόγω της σχέσης (2), προ-

κύπτει:  


 1

2

1

2

  ή   
  1

2

2
  

ή  αγων = 7,5 rad/s2.

β.	 Από τη σχέση (2) για αγων = 7,5 rad/s2 προ-
κύπτει: t1 = 4 s.

γ.	 Έστω   η ταχύτητα του σώματος Σ τη 
χρονική στιγμή t1 και υ  η γραμμική ταχύτητα 
του σημείου Ζ της τροχαλίας που φαίνεται στο 
σχήμα την ίδια χρονική στιγμή.
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R Z

Σ

υ

υΣ

Επειδή το νήμα είναι μη εκτατό και δεν ολι-
σθαίνει στο αυλάκι της τροχαλίας, ισχύει:
 

     ή  υΣ = υ  ή  υΣ = ω1R

ή  υΣ = 12 m/s.

δ. Έστω ακ το μέτρο της κεντρομόλου επιτά-
χυνσης ενός υλικού σημείου της περιφέρειας 
της τροχαλίας τη χρονική στιγμή t1. Έχουμε:




 
2

R
  ή   

 
( )

1

2
R

R
  ή  ακ = ω1

2R

ή  ακ = 360 m/s2.
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65. α. Έστω αcm το μέτρο της επιβράδυνσης 
του κέντρου μάζας του δίσκου. Η χρονική εξί-
σωση του μέτρου της ταχύτητας του κέντρου 
μάζας του δίσκου δίνεται από τη σχέση:
  

cm cm cm
t  0

 (1).

Από τη σχέση (1) για υcm = 0 και t = t1 προκύ-

πτει: 0
0 1

   
cm cm

t   ή  t
cm

cm

1

0  


 (2).

Το διάστημα που διανύει ο δίσκος από τη χρο-
νική στιγμή t = 0 έως τη χρονική στιγμή t1 δί-

νεται από τη σχέση: s t t
cm cm

   
0 1 1

21

2
 (3).

Από της σχέσεις (2) και (3) προκύπτει: 

s
cm

cm

  


0

2

2
  ή  


cm

cm

s
  0

2

2
  ή  αcm = 7,5 m/s2.

Ισχύει: αcm = αγωνR  ή   
 

cm

R

ή  αγων = 15 rad/s2.

β. Από τη σχέση (2) προκύπτει: t1 = 4 s.

γ. Είναι: 










2

2

cm

cm

  ή  υ
υ

A

B

= 2 .

δ. Τη χρονική στιγμή t3 το σημείο Γ έχει ταχύ-
τητα υ

cmcm
,  λόγω της μεταφορικής κινήσης του 

δίσκου, και γραμμική ταχύτητα υ, λόγω της 
στροφικής κίνησης του δίσκου. Η ταχύτητα 


  του σημείου Γ τη χρονική στιγμή t3 δίνεται 
από τη σχέση:   

    
cm

.

Γ

R

r
K

d
2

υ υcm

Επειδή τα διανύσματα υ
cmcm

 και υ  έχουν την 
ίδια φορά, το μέτρο της ταχύτητας του σημείου 
Γ τη χρονική στιγμή t3 είναι:
υΓ = υcm + υ  ή  υΓ = ωR + ωr, όπου r = d – R 
(σύμφωνα με το προηγούμενο σχήμα)

ή  υΓ = ω(R + d2 – R)  ή  υΓ = ωd2

ή  υΓ = (ω0 – αγων 
. t3)d2   

ή 
 

  






 cm cm

R R
t d

0

3 2
  ή  υΓ = 31,5 m/s.

66. α. Το μέτρο της επιτάχυνσης α
cm( )1

 του 
κέντρου μάζας του τροχού και το μέτρο της 
γωνιακής επιτάχυνσης αγων(1) του τροχού παρα-
μένουν σταθερά από τη χρονική στιγμή t = 0 
έως τη χρονική στιγμή t = 10 s. Είναι: 




( )1



t

  ή  ( )
/

1

2100 40

10 0
 


rad s

ή  αγων(1) = 6 rad/s2.

Επειδή ο τροχός κυλίεται χωρίς να ολισθαίνει, 
ισχύει: αcm(1) = αγων(1)R  ή  αcm(1) = 2,4 m/s2.

Το μέτρο της επιτάχυνσης (επιβράδυνσης) 


α
cm( )2

 του κέντρου μάζας του τροχού και το 
μέτρο της γωνιακής του επιβράδυνσης ( )2

 
του τροχού παραμένουν σταθερά από τη χρο-
νική στιγμή t = 10 s έως τη χρονική στιγμή 
t = 15 s. Είναι:




(2)



t

  ή  ( )
/

2

2
0 100

15 10





rad s   

ή  αγων(2) = 20 rad/s2.

Επειδή ο τροχός κυλίεται χωρίς να ολισθαίνει, 
ισχύει: αcm(2) = αγων(2)R  ή  αcm(2) = 8 m/s2.
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β. Είναι: υανωτ = 2υcm(1)  ή  υανωτ = 2ω1R  

ή  υανωτ = 2R(ω0 + αγων(1)t1)  ή  υανωτ = 41,6 m/s.

γ. Έστω υcm(2) η ταχύτητα του κέντρου μάζας 
του τροχού τη χρονική στιγμή t2 και ω2 το μέ-
τρο της γωνιακής ταχύτητας του τροχού την 
ίδια χρονική στιγμή. Είναι: υcm(2) = ω2R
ή    cm

t R
( ) ( )

( )
2 0 2
     

όπου Δt = (12 – 10) s,  ή  υcm(2) = 24 m/s.

Η ταχύτητα του σημείου Α που φαίνε-
ται στο σχήμα τη χρονική στιγμή t2 είναι: 
  

     cm 2
,  όπου 

cm 2  η ταχύτητα του ση-
μείου Α, λόγω της μεταφορικής κίνησης του 
τροχού τη χρονική στιγμή t2, και υ  η γραμ-
μική ταχύτητα του σημείου Α την ίδια χρονι-
κή στιγμή, λόγω της στροφικής κίνησης του 
τροχού.

A

θ θ
R

K

x

υΑυ

υcm(2)

d

Έστω θ η γωνία που σχηματίζουν τα διανύ-
σματα των ταχυτήτων 

cm 2  και υ  στο σημείο 
Α τη χρονική στιγμή t2. Το μέτρο υΑ της τα-
χύτητας του σημείου Α τη χρονική στιγμή t2 
υπολογίζεται από τη σχέση:

          cm cm2

2 2

2
2   

ή          2 2
2

2

2

2

cm cm
 (1).

Από το σχήμα προκύπτει:

  x

R
  ή    d R

R
  ή    1

2
 (2).

Τελικά από τη σχέση (1), λόγω της σχέσης (2), 

προκύπτει:     3
2cm

  ή  υΑ = 24 3  m/s.

δ. Έστω Δθ1 η γωνία στροφής του τροχού από 
τη χρονική στιγμή t = 0 έως τη χρονική στιγμή 
t = 10 s. Η γωνία στροφής Δθ1 είναι αριθμη-
τικά ίση με το γραμμοσκιασμένο εμβαδόν Ε1 
που φαίνεται στο ακόλουθο σχήμα.

0 10

100

40

t(s)

ω(rad/s)

15

E1 E2

Είναι: Δθ1 = Ε1  ή  
1

40 100

2
10 

rad

ή  Δθ1 = 700 rad.

Έστω Δθ2 η γωνία στροφής του τροχού από τη 
χρονική στιγμή t = 10 s έως τη χρονική στιγμή 
t = 15 s. Η γωνία στροφής Δθ2 είναι αριθμη-
τικά ίση με το γραμμοσκιασμένο εμβαδόν Ε2 
που φαίνεται στο παραπάνω σχήμα. Είναι: 

Δθ2 = Ε2  ή  
2

100 5

2
 

rad   ή  Δθ2 = 250 rad.

Η γωνία στορφής Δθ του τροχού από τη χρο-
νική στιγμή t = 0 έως της χρονική στιγμή 
t = 15 s είναι: Δθ = Δθ1 + Δθ2  ή  Δθ = 950 rad.

Το πλήθος Ν των περιστροφών που εκτελεί 
ο τροχός από τη χρονική στιγμή t = 0 έως τη 
χρονική στιγμή t = 15 s είναι:

  
2

  ή  Ν = (475/π) περιστροφές.
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67. α. Το μέτρο του ρυθμού με τον οποίο με-
ταβάλλεται η γωνιακή ταχύτητα του δίσκου 
κατά την άνοδό του στο κεκλιμένο επίπεδο 
είναι ίσο με το μέτρο αγων της γωνιακής επι-
βράδυνσης του δίσκου.
Έστω ω0 το μέτρο της γωνιακής ταχύτητας 
του δίσκου τη χρονική στιγμή t = 0. Επειδή 
ο δίσκος κυλίεται χωρίς να ολισθαίνει, ισχύει: 
υcm(0) = ω0R  ή  ω0 = 50 rad/s.

Έστω Δθ η γωνία στροφής του δίσκου από τη 
χρονική στιγμή t = 0 έως τη χρονική στιγμή t1. 

Είναι: N  
2

  ή  Δθ = Ν2π  ή  Δθ = 100 rad.

Η χρονική εξίσωση του μέτρου της γωνιακής 
ταχύτητας του δίσκου κατά την άνοδό του στο 
κεκλιμένο επίπεδο δίνεται από τη σχέση:
   

0
t  (1).

Από τη σχέση (1) για ω = 0 και t = t1 προκύ-

πτει: 0
0 1

  t   ή  t
1

0



 (2).

Η γωνία στροφής του δίσκου από τη χρονική 
στιγμή t = 0 έως τη χρονική στιγμή t1 δίνεται 

από τη σχέση:    
0 1 1

21

2
t t  ή, λόγω 

της σχέσης (2):  


 0

2

2
  ή   

 
0

2

2

ή  αγων = 12,5 rad/s2.

β. Από τη σχέση (2) προκύπτει: t1 = 4 s.

γ. Έστω ω το μέτρο της γωνιακής ταχύτητας 
του δίσκου τη χρονική στιγμή t2. Από τη σχέση 
(1) προκύπτει:    

0 2
t   

ή  ω = 12,5 rad/s.
Έστω υcm το μέτρο της ταχύτητας του κέντρου 
μάζας του δίσκου τη χρονική στιγμή t2. Επειδή 
ο δίσκος κυλίεται χωρίς να ολισθαίνει, ισχύει: 
υcm = ωR  ή  υcm = 10 m/s.

δ. Για το μέτρο της ταχύτητας του ανώτα-
του (σε σχέση με το κεκλιμένο επίπεδο) υλι-
κού σημείου του δίσκου τη χρονική στιγμή t3  
ισχύει:    2

cm
  ή   

cm
m s24 / ,  όπου 


cm

 είναι το μέτρο της ταχύτητας του κέντρου 
μάζας του δίσκου τη χρονική στιγμή t3.

Έστω   το μέτρο της γωνιακής ταχύτη-
τας του δίσκου τη χρονική στιγμή t3. Είναι: 
  
cm

R   ή    30 rad s/ .  Από τη σχέση 
(1) για     και t = t3 προκύπτει:

    0 3
t   ή  t3 = 1,6 s.

Η μετατόπιση του κέντρου μάζας δίσκου από 
τη χρονική στιγμή t = 0 έως τη χρονική στιγμή 
t3 υπολογίζεται από τη σχέση: 

x t t
cm cm

   
0

2

3 3

1

2
  

ή  x t tR
cm

   0

2

3 3

1

2
  ή  Δx = 51,2 m.

68. α. Επειδή το νήμα είναι μη εκτατό και 
δεν ολισθαίνει στην περιφέρεια της κυκλικής 
εγκοπής, η επιτάχυνση   του άκρου Α του 
νήματος είναι ίση με την εφαπτομενική στην 
κυκλική εγκοπή επιτάχυνση   του υλικού 
σημείου Ζ που φαίνεται στο παρακάτω σχήμα.

AΖ

r

α
cm
α
Z

α
K

α
ε

α
A

Δηλαδή, είναι:   

� � ��� � �
cm

  ή  αΑ = αε + αcm  

ή       R
R

2
  ή     3

2
R

ή  αγων = 10 rad/s2.
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β. Είναι: αcm = αγωνR  ή  αcm = 4 m/s2.

γ. Έστω υcm το μέτρο της ταχύτητας του κέ-
ντρου μάζας του δίσκου τη χρονική στιγμή t1. 
Είναι: υcm = αcmt1  ή  υcm = 20 m/s. Η ταχύτητα 


  του σημείου Β τη χρονική στιγμή t1 είναι: 
  

    
cm

,  όπου υ  η γραμμική ταχύτητα 
του σημείου Β τη χρονική στιγμή t1.

r
KB

υBυ

υcm

t1

Έστω ω το μέτρο της γωνιακής ταχύτητας του 
δίσκου τη χρονική στιγμή t1. Επειδή ο δίσκος 
κυλίεται χωρίς να ολισθαίνει, ισχύει: υcm = ωR  
ή  ω = 50 rad/s. Το μέτρο της γραμμικής ταχύ-
τητας του υλικού σημείου Β τη χρονική στιγμή 
t1 υπολογίζεται από τον τύπο: 
υ = ωr  ή  υ = 10 m/s. Επειδή τα διανύσματα 


υ
cmcm

 και υ  είναι κάθετα μεταξύ τους, το μέτρο  
της ταχύτητας του σημείου Β τη χρονική στιγ-

μή t1 είναι:     
cm

2 2   ή  υΒ= 10 5 m/s.

δ. Έστω Δθ η γωνία στροφής του δίσκου από τη 
χρονική στιγμή t = 0 έως τη χρονική στιγμή t1. 

Είναι:   1

2
1

2
t   ή  Δθ = 125 rad. 

Έστω   το μήκος του νήματος που έχει ξε-
τυλιχθεί από την περιφέρεια της κυκλικής 
εγκοπής από τη χρονική στιγμή t = 0 έως τη 
χρονική στιγμή t1. Είναι:   r   ή    = 25 m.
ε. Το μήκος  2  του οριζόντιου τμήματος του 
νήματος τη χρονική στιγμή t1 είναι:   

2 1
    

ή  2 = 27 m.

69. α. Έστω ω το μέτρο της γωνιακής ταχύτη-
τας του δίσκου τη χρονική στιγμή t1. Το σημείο 
επαφής Δ του νήματος με τον δίσκο έχει ταχύ-
τητα υ

cmcm
,  λόγω της μεταφορικής κίνησης του 

δίσκου, και γραμμική ταχύτητα υ,  λόγω της 
στροφικής κίνησης του δίσκου.

A

Δ

B

r K

R

υcm

υcm

υA
υ

υ

t1

�1

Επειδή το νήμα είναι μη εκτατό και δεν ολι-
σθαίνει στην περιφέρεια της κυκλικής εγκοπής, 
η ταχύτητα   του άκρου Α του νήματος τη 
χρονική στιγμή t1 είναι ίση με την ταχύτητα του 
σημείουΔ την ίδια χρονική στιγμή. Δηλαδή εί-
ναι:  

     ή    

    
cm

  ή      
cm

  

ή     R
R

2
 ή    R

2
 ή  ω = 20 rad/s.

β. Έστω   η ταχύτητα του σημείου Β. Είναι:
  

     
cm

  ή      R
R

2

ή     3

2
R   ή  υΒ = 12 m/s.

γ. Είναι: ω = αγωνt1  ή  αγων = 5 rad/s2.

δ. Έστω Δθ η γωνία στροφής του δίσκου από 
τη χρονική στιγμή t = 0 έως τη χρονική στιγμή 

t1. Είναι:   1

2
1

2
t   ή  Δθ = 40 rad. Το μή-

κος   του νήματος που τυλίγεται στον δίσκο 
από τη χρονική στιγμή t = 0 έως τη χρονική 
στιγμή t1 είναι:   r   ή   = 8 m.
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ε. Το μήκος του οριζόντιου τμήματος του νή-
ματος τη χρονική στιγμή t2 είναι:   

2 1
    

ή  2 = 2 m.

70. α. Έστω μια τυχαία χρονική στιγμή t στην 
οποία η ταχύτητα του άκρου Α του νήματος εί-
ναι .  Την ίδια χρονική στιγμή το σημείο Β, 
στο οποίο το νήμα εφάπτεται με τον κύλινδρο 
έχει ταχύτητα υ

cm
, λόγω της μεταφορικής κί-

νησης του κυλίνδρου, και ταχύτητα υ  λόγω 
τη στροφικής κίνησης του κυλίνδρου, όπως 
φαίνεται στο ακόλουθο σχήμα.

φ

R

Α
υΑ

Β

υΒ

υcm
υ

Επειδή το νήμα είναι μη εκτατό και δεν  
ολισθαίνει στην περιφέρεια του κυλίνδρου, 
ισχύει:  

     ή    

    
cm

 (1).
Επειδή τα διανύσματα υ

cm
 και υ  έχουν την 

ίδια φορά, η σχέση (1) γράφεται:
υΑ = υcm + υ  ή  υΑ = 2υcm  ή  παραγωγίζοντας:

d

dt

d

dt

cm
   2   ή  αΑ = 2αcm  ή  αcm = 5 m/s2.

Επειδή ο κύλινδρος κυλίεται χωρίς να ολισθαί-
νει, ισχύει: αcm = αγωνR  ή  αγων = 25 rad/s2.

β. Έστω Δxcm η μετατόπιση του κέντρου μά-
ζας του κυλίνδρου από τη χρονική στιγμή t = 0  

έως τη χρονική στιγμή t1. Είναι:   h

x
cm


  ή  

Δxcm = 40 m. Είναι: x t
cm cm

 1

2
1

2   ή  t1 = 4 s. 

Έστω υcm το μέτρο της ταχύτητας του κέντρου 
μάζας του κυλίνδρου τη χρονική στιγμή t1. 
Είναι: υcm = αcmt1  ή  υcm = 20 m/s. Έστω υΑ το 
μέτρο της ταχύτητας του νήματος τη χρονική 
στιγμή t1. Είναι: υΑ = 2υcm  ή  υΑ = 40 m/s.

γ. Είναι: υcm = ωR  ή  ω = 100 rad/s.

δ. Έστω Δθ1 η γωνία στροφής του κυλίν-
δρου από τη χρονική στιγμή t = 0 έως τη 

χρονική στιγμή t1. Είναι:  1 1

21

2
 t   ή  




1 1

21

2
 cm

R
t   ή  Δθ1 = 200 rad. Έστω Δθ2 η 

γωνία στροφής του κυλίνδρου από τη χρονι-
κή στιγμή t1 έως τη χρονική στιγμή t2. Είναι: 
 

2 2 1
 ( )t t   ή  Δθ2 = 200 rad. Η γω-

νία στροφής Δθ του δίσκου από τη χρονική 
στιγμή t = 0  έως τη χρονική στιγμή t2 είναι: 
Δθ = Δθ1 + Δθ2  ή  Δθ = 400 rad. Το ζητούμενο 
πλήθος Ν των περιστροφών υπολογίζεται από 

τη σχέση:   
2

  ή  Ν = (200/π) περιστρο-
φές.

71. α. Έστω ω το μέτρο της γωνιακής ταχύ-
τητας του καρουλιού τη χρονική στιγμή t1. 
Επειδή το νήμα είναι αβαρές και μη εκτατό, 
η ταχύτητα   του ελεύθερου άκρου Α του 
νήματος τη χρονική στιγμή t1 είναι ίση με την 
ταχύτητα ��  του σημείου επαφής του νήμα-
τος με τον κύλινδρο την ίδια χρονική στιγμή. 
Δηλαδή, είναι:  

    (1).

r

K

Ζ

R2
R1

A

N

t1
υcm

υcm

υ υΑ

υ
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Έστω υ
cmcm

 η ταχύτητα του σημείου Ζ τη χρο-
νική στιγμή t1, λόγω της μεταφορικής κίνησης 
που εκτελεί το καρούλι, και υ  η γραμμική  
ταχύτητα του σημείου Ζ την ίδια χρονική στιγ-
μή, λόγω της στροφικής κίνησης που εκτελεί 
το καρούλι. Από τη σχέση (1) έχουμε: 
  

    
cm

  ή  υΑ = υcm + υ

ή  υΑ = υcm + ωR1 (2). 

Επειδή ο κύλινδρος κυλίεται χωρίς να ολισθαί-
νει πάνω στη σανίδα, το σημείο επαφής του  
Ν με τη σανίδα τη χρονική στιγμή t1 έχει τα-
χύτητα ίση με το μηδέν. Δηλαδή είναι: 



  0

ή   



 
cm
  0   ή   

cm
  0   ή   

cm
 

ή  υcm = ωR1 (3).

Από τις σχέσεις (2) και (3) προκύπτει:

υΑ = 2ωR1  ή    

2
1

R
  ή  ω = 100 rad/s.

β. Είναι: ω = αγωνt1  ή  αγων = 25 rad/s2.

γ. Έστω Β το ανώτερο υλικό σημείο ενός από 
τους δύο δίσκους τη χρονική στιγμή t1.

r
K

B

R2
R1

A

υcm

υΑ

υ

Έστω   η ταχύτητα του σημείου Β τη χρονι-
κή στιγμή t1 και    η γραμμική του ταχύτητα 
την ίδια χρονική στιγμή. Είναι:   

     
cm

  

ή       
cm

  ή  υΒ = ωR1 + ωR2

ή  υΒ = ω(R1 + R2)  ή  υΒ = 30 m/s.

δ. Έστω Δθ η γωνία στροφής του καρουλιού 
από τη χρονική στιγμή t = 0 έως τη χρονική 

στιγμή t1. Είναι   1

2
1

2
t   ή  Δθ = 200 rad.  

Το μήκος του τόξου που διανύει ένα υλικό 
σημείο της περιφέρειας ενός από τους δύο  
δίσκους υπολογίζεται από τη σχέση: s = R2Δθ  
ή  s = 40 m.
ε. Έστω αcm το μέτρο της επιτάχυνσης του κέ-
ντρου μάζας του καρουλιού. 
Επειδή ο κύλινδρος κυλίεται χωρίς να ολισθαί-
νει, ισχύει: αcm = αγωνR1  ή  αcm = 2,5 m/s2. 
Η μετατόπιση του κέντρου μάζας του κα-
ρουλιού από τη χρονική στιγμή t = 0 έως τη 
χρονική στιγμή t1 υπολογίζεται από τη σχέση: 

x t
cm cm

 1

2
1

2   ή  Δxcm = 20 m.

Έστω   το μήκος του νήματος που έχει ξετυ-
λιχθεί από την περιφέρεια του κυλίνδρου από 
τη χρονική στιγμή t = 0  έως τη χρονική στιγμή 
t1. Είναι:   R

1
   ή   = 20 m.

72. α. Είναι: ω1 = αγωνt1  ή  αγων = 10 rad/s2.
β. Επειδή το νήμα είναι μη εκτατό και δεν ολι-
σθαίνει στην περιφέρεια της κυκλικής εγκο-
πής, ισχύει κάθε χρονική στιγμή:  

  

ή   



 
cm
  0   ή   

cm
  0   ή  υcm = υ

ή  υcm = ωr (1).
Παραγωγίζοντας τη σχέση (1) προκύπτει:
d

dt

d

dt
r

cm
    ή   αcm = αγωνr  ή  αcm = 1 m/s2.

Α

K
r

Z

υcm

υ
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γ. Είναι:   

     
cm

 όπου    η γραμμική 
ταχύτητα του σημείου Β τη χρονική στιγμή t1. 
Είναι:   

1
R   ή    4 m s/ .

Α

K

B

r

υcmυB

υ

Από τη σχέση (1) προκύπτει: υcm = ω1r  ή 
υcm = 2 m/s. Επειδή τα διανύσματα υ

cmcm
 και 

   είναι κάθετα μεταξύ τους, το μέτρο της τα-
χύτητας του σημείου Β τη χρονική στιγμή t1 

υπολογίζεται από τη σχέση:      
cm

2 2
( )

ή  υΒ = 20  m/s.

δ. Το μέτρο της γραμμικής ταχύτητας     
του σημείου Δ τη χρονική στιγμή t1 είναι:
  R   ή    4 m s.

Α

KΔ
rR

υcm

υ

Έστω 

  η ταχύτητα του σημείου Δ τη 
χρονική στιγμή t1. Είναι:   

     
cm

  ή  

     
cm

  ή    2 m s/ .  Δηλαδή η τα-
χύτητα   του σημείου Δ τη χρονική στιγμή t1 
είναι κατακόρυφη με φορά προς τα πάνω και 
έχει μέτρο: υΔ = 2 m/s.

73. α. Η ταχύτητα   του ελεύθερου άκρου Α 
του νήματος είναι κάθε χρονική στιγμή ίση με 
την ταχύτητα   του σημείου επαφής Ζ του 
νήματος με τον δίσκο. Έστω υ

cmcm
 η ταχύτητα 

του κέντρου μάζας του δίσκου και υ  η γραμ-
μική ταχύτητα του σημείου Ζ μια τυχαία χρο-
νική στιγμή.

Α

K

R
Ζ

υA

υcm

υ

υcm

Είναι:  

     ή    

    
cm

ή      
cm

  ή      R
cm

ή  d

dt

d

dt
R

d

dt

cm
       ή      R

cm
 

ή    cm
R     ή  αcm = 6 m/s2.

β. Το μέτρο της ταχύτητας του κέντρου μάζας 
του δίσκου τη χρονική στιγμή t1 είναι:
υcm = αcmt1  ή  υcm = 12 m/s. 
Το μέτρο της γωνιακής ταχύτητας του δίσκου 
τη χρονική στιγμή t1 είναι: ω = αγωνt1  ή
ω = 80 rad/s. Το μέτρο της γραμμικής ταχύ-
τητας    του σημείου Β τη χρονική στιγμή  
t1 είναι:   R   ή    16 m s.
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Α

K

R
B

υcm

υ

Έστω   η ταχύτητα του σημείου Β τη χρονι-
κή στιγμή t1. Είναι:   

  
B cm
  

ή    
B cm
     ή  υΒ = 28 m/s.

γ. Έστω    η γραμμική ταχύτητα του σημείου 
Δ τη χρονική στιγμή t1. Είναι:   r
ή    8 m s.

Α
αA

K

Δ

r

υcm
υΔ

υ

Το μέτρο της ταχύτητας   του σημείου Δ τη 
χρονική στιγμή t1 υπολογίζεται από τη σχέση:

     
cm

2 2
( )   ή  υΔ = 208 m s.

δ. Έστω Δθ η γωνία στροφής του δίσκου από 
τη χρονική στιγμή t = 0  έως τη χρονική στιγμή 

t1. Ισχύει:   1

2
1

2
t   ή  Δθ = 80 rad.

Το μήκος   του νήματος που ξετυλίγεται από 
το αυλάκι του δίσκου από τη χρονική στιγμή  
t = 0 έως τη χρονική στιγμή t1 υπολογίζεται 
από τη σχέση:   R   ή   = 16 m.

Έστω Δxcm η μετατόπιση του κέντρου μάζας 
του δίσκου από τη χρονική στιγμή t = 0 έως τη 
χρονική στιγμή t1.

Είναι: x t
cm cm

 1

2
1

2   ή  Δxcm = 12 m.

74. α. Έστω ω1 και ω2 τα μέτρα των γωνια-
κών ταχυτήτων των δίσκων Δ1 και Δ2 αντίστοι-
χα τη χρονική στιγμή t1. Επειδή το νήμα είναι 
μη εκτατό και δεν ολισθαίνει στις περιφέρειες 
των δύο δίσκων, κάθε χρονική στιγμή ισχύει:
 

     ή    

  
cm
 

2 1
  ή    

cm
 

2 1

ή    
cm

R R 
2 2 1 1

ή  d

dt

d

dt
R

d

dt
R

cm
   2

2

1

1

ή     cm
R R 

( ) ( )2 2 1 1
  ή  αcm = 8 m/s2.

R1 Κ1

Δ1

R2 K2

Δ2

B

Ζ

Ν

t1

υcmυcm

υ1

υ2

β. Είναι: υcm = αcmt1  ή  υcm = 8 m/s.

γ. Είναι: ω2 = αγων(2)t1  ή  ω2 = 40 rad/s.

Έστω υ το μέτρο της γραμμικής ταχύτητας  
του σημείου Β τη χρονική στιγμή t1. 
Είναι: υ = ω2R2  ή  υ = 4 m/s.
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R1 Κ1

Δ1

K2 Δ2

B
t1

υcm υB

υ

Το μέτρο της ταχύτητας του σημείου Β τη χρο-
νική στιγμή t1 υπολογίζεται από τη σχέση: 

    
cm

2 2   ή  υΒ = 80 m s.

δ. Έστω Δθ1 η γωνία στροφής του δίσκου Δ1 
από τη χρονική στιγμή t = 0  έως τη χρονική 
στιγμή t1.

Είναι  1 1 1

21

2


( )
t   ή  Δθ1 = 5 rad. 

Το μήκος του νήματος που έχει ξετυλιχθεί από 
τον δίσκο Δ1 από τη χρονική στιγμή t = 0 έως 
τη χρονική στιγμή t1 είναι: 

1 1 1
 R 

ή  
1

2= m.

Έστω Δθ2 η γωνία στροφής του δίσκου Δ2  
από τη χρονική στιγμή t = 0  έως τη χρονική 
στιγμή t1.

Είναι  2 2 1

21

2


( )
t   ή  Δθ2 = 20 rad. Το μή-

κος του νήματος που έχει ξετυλιχθεί από τον 
δίσκο Δ2 από τη χρονική στιγμή t = 0 έως τη 
χρονική στιγμή t1 είναι: 

2 2 2
 R 

ή  
2

2= m.

Συνεπώς, το συνολικό μήκος του νήματος που 
έχει ξετυλιχθεί και από τους δύο δίσκους είναι: 
   

1 2
  ή   = 4 m.

ε. Το σημείο Γ της περιφέρειας του δίσκου Δ1 
που φαίνεται στο ακόλουθο σχήμα τη χρονι-
κή στιγμή t1 έχει επιτρόχια επιτάχυνση   
και κεντρομόλο επιτάχυνση  .  Το μέτρο της  
επιτρόχιας επιτάχυνσης του σημείου Γ είναι: 
αε = αγων(1)R1  ή  αε = 4 m/s2. Έστω ω1 το μέτρο 
της γωνιακής ταχύτητας του δίσκου Δ1 τη χρο-
νική στιγμή t1. 
Είναι: ω1 = αγων(1)t1  ή  ω1 = 10 rad/s. Το μέτρο 
της κεντρομόλου επιτάχυνσης του σημείου Γ 
τη χρονική στιγμή t1 υπολογίζεται από τη σχέ-
ση:    1

2
R   ή  ακ = 40 m/s2.

R1 Κ1

Δ1

Γ

R2 K2

Δ2

t1

ακ

αε

αΓ

Επειδή τα διανύσματα ��  και ��  είναι κάθετα 
μεταξύ τους, το μέτρο της επιτάχυνσης ��  του 
σημείου Γ τη χρονική στιγμή t1 υπολογίζεται 
από τη σχέση:

� � �� �� � �2 2   ή  αΓ = 1 616 2. m s .

75. α. Είναι: υΣ = αΣt1  ή  αΣ = 1 m/s2.
β. Έστω ω το μέτρο της γωνιακής ταχύτητας 
του δίσκου τη χρονική στιγμή t1. 
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Δ

K

(1)

(2)

ΖΝ

R

r

t1

Σ

υΣ

υcm
υcm

υ

υ

Επειδή το νήμα είναι αβαρές και μη εκτατό, 
ισχύει:
 

     ή  


  0   ή   



 
cm
  0   

ή  υcm – υ = 0  ή  υcm = υ  ή  υcm = ωR (1) και 
 

     ή    

     
cm

  ή       
cm

 

ή  υΣ = ωR + ωr  ή  ω = 4 rad/s.

γ. Είναι: ω = αγωνt1  ή  αγων = 2 rad/s2.

δ. Παραγωγίζοντας τη σχέση (1) προκύπτει:
d

dt

d

dt
R

cm
    ή  αcm = αγωνR  ή  αcm = 0,8 m/s2.

ε. Έστω Δθ η γωνία στροφής του δίσκου από 
τη χρονική στιγμή t = 0 έως τη χρονική στιγμή 

t1. Είναι:   1

2
1

2
t   ή  Δθ = 4 rad.

Το μήκος 1  του νήματος (1) που έχει ξετυ-
λιχθεί από την περιφέρεια του δίσκου από τη 
χρονική στιγμή t = 0 έως τη χρονική στιγμή 
t1 είναι: 

1
 R   ή  1 = 1,6 m. Το μήκος 

 2  του νήματος (2) που έχει ξετυλιχθεί από 
την περιφέρεια της κυκλικής εγκοπής στο ίδιο 
χρονικό διάστημα είναι: 

2
 r  ή  2 = 0,4 m.

76. α. Κάθε χρονική στιγμή ισχύει:

υ1 = υπερ(1)  ή  υ1 = ωR1  ή  d

dt

d

dt
R

 
1

1
   

ή  α1 = αγωνR1  ή  α1 = 2 m/s2.

β. Κάθε χρονική στιγμή ισχύει: 

υ2 = υπερ(2)  ή  υ2 = ωR2  ή  d

dt

d

dt
R

 
2

2
   

ή  α2 = αγωνR2  ή  α2 = 1 m/s2.

γ. Ισχύει: υ1 = ω1R1  ή  ω1 = 20 rad/s.

δ. Ισχύει: d = s1 + s2  ή  d t t 1

2

1

2
1 2

2

2 2

2 

ή  t2 = 1 s.

ε. Ισχύει:   1

2
2

2
t   ή  Δθ = 5 rad.

77. α. Έστω υΣ το μέτρο της ταχύτητας του 
σώματος Σ τη χρονική στιγμή t1 και υ το μέτρο 
της γραμμικής ταχύτητας του σημείου Ζ της 
περιφέρειας της τροχαλίας, που φαίνεται στο 
ακόλουθο σχήμα, την ίδια χρονική στιγμή.

r Ζ

Ν

Σ

R

K

υ
cm

υ
Ν

υ
Z

υ
Σ

Επειδή το νήμα είναι μη εκτατό και δεν ολι-
σθαίνει στην περιφέρεια της τροχαλίας, ισχύει: 
 

     ή  υΣ = υ  ή  υΣ = ωτr (1), όπου ωτ το 
μέτρο της γωνιακής ταχύτητας της τροχαλίας 
τη χρονική στιγμή t1. Παραγωγίζοντας τη σχέ-
ση (1) προκύπτει:
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d

dt

d

dt
r

     ή  α = αγων(τ)r

ή  αγων(τ) = 20 rad/s2.

β. Έστω υ
cmcm

 το μέτρο της ταχύτητας του κέ-
ντρου μάζας του δίσκου μια τυχαία χρονική 
στιγμή t. Επειδή το νήμα είναι μη εκτατό και 
δεν ολισθαίνει στην περιφέρεια της τροχαλίας, 
ισχύει:  

     ή   

 
cm

    ή  υcm = υ

ή  υcm = ωτr (2)  ή  d

dt

d

dt
r

cm
 

ή  αcm = αγων(τ)r  ή  αcm = 2 m/s2.

γ. Είναι: h t 1

2
1

2   ή  t1 = 1 s.

Το μέτρο της ταχύτητας του κέντρου μάζας 
του δίσκου τη χρονική στιγμή t1 υπολογίζεται 
από τη σχέση: υcm = αcmt1  ή  υcm = 2 m/s.

Το μέτρο της ταχύτητας του ανώτατου σημείου 
του δίσκου τη χρονική στιγμή t1 είναι:
υανωτ = 2υcm  ή  υανωτ = 4 m/s.

δ. Από τις σχέσεις (1) και (2) προκύπτει ότι: 
υΣ = υcm  ή  υΣ = 2 m/s. Συνεπώς, η κινητική 
ενέργεια του σώματος Σ τη χρονική στιγμή t1 

είναι:   1

2

2
m   ή  ΚΣ = 2 J.

ε. Έστω ω το μέτρο της γωνιακής ταχύτητας 
του δίσκου τη χρονική στιγμή t1.

Είναι: υcm = ωR  ή  ω = 5 rad/s. 

Επειδή ο δίσκος κυλίεται χωρίς να ολισθαίνει 
στο οριζόντιο επίπεδο, ισχύει: αcm = αγωνR
ή  αγων = 5 rad/s2.
Έστω Δθ η γωνία στροφής του δίσκου από τη 
χρονική στιγμή t1 έως τη χρονική στιγμή t2. 

Είναι:      (t ) (t )
2 1 2 1

2
1

2
t t

ή  Δθ = 120 rad.

Συνεπώς, το πλήθος των περιστροφών που 
εκτελεί ο δίσκος από τη χρονική στιγμή t1 έως 
τη χρονική στιγμή t2 είναι:

N  
2

  ή  Ν = (60/π) περιστροφές.

78. α. Η γωνία στροφής Δθ1 της τροχαλίας 
από τη χρονική στιγμή t = 0 έως τη χρονική 
στιγμή t1 υπολογίζεται από τη σχέση:
Δθ1 = Ν2π  ή  Δθ1 = 90 rad.

Είναι: ω1 = αγων(τ)t1  (1) και   1 1

21

2


( )
t  (2). 

Με διαίρεση κατά μέλη των σχέσεων (1) και 

(2) προκύπτει: 


1

1 1

2




t
  ή  t1 = 3 s. Συνεπώς, 

από τη σχέση (1) προκύπτει: αγων(τ) = 20 rad/s2.

β. 

r

Δ

Ν

Σ

R

Ζ

υ
cm

υ
cm υ

Δ

υ
Ν

υ

υ
Σ

Επειδή το νήμα είναι μη εκτατό και δεν ολι-
σθαίνει στην περιφέρεια της τροχαλίας, ισχύει: 
 

     ή  υΣ = ωτr  ή  
d

dt

d

dt
r

  

ή  αΣ = αγων(τ)r  ή  αΣ = 4 m/s2.

γ. Επειδή το νήμα είναι μη εκτατό και δεν ολι-
σθαίνει στην περιφέρεια της τροχαλίας και του 
κυλίνδρου, ισχύει:  

     ή    

  
cm

  

ή  2υcm = ωτr  ή  2
d

dt

d

dt
r

cm
 

ή  2αcm = αγων(τ)r  ή  αcm = 2 m/s2.
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δ. Είναι: h t 1

2
2

2   ή  t2 = 2 s.

Έστω αγων το μέτρο της γωνιακής επιτάχυνσης 
του κυλίνδρου. Επειδή ο κύλινδρος κυλίεται 
χωρίς να ολισθαίνει, ισχύει:
αcm = αγωνR  ή  αγων = 4 rad/s2. 

Έστω ωΚ το μέτρο της γωνιακής ταχύτητας 
του κυλίνδρου τη χρονική στιγμή t2. Είναι:
ωΚ = αγωνt2  ή  ωΚ = 8 rad/s.

ε. Έστω Δθ2 η γωνία στροφής του κυλίνδρου 
από τη χρονική στιγμή t = 0 έως τη χρονική 
στιγμή t2. Είναι: 

 2 2

2
1

2
 t   ή  Δθ2 = 8 rad. 

Το μήκος   του νήματος που έχει ξετυλιχθεί 
από την περιφέρεια του κυλίνδρου από τη χρο-
νική στιγμή t = 0 έως τη χρονική στιγμή t2 εί-
ναι:   R

2
  ή   = 4 m.

79. α. Έστω αΣ το μέτρο της επιτάχυνσης του 
σώματος Σ. Είναι: υΣ = αΣt1  ή  αΣ = 3 m/s2.

β.	 Έστω υ  η γραμμική ταχύτητα του σημείου 
Ν της περιφέρειας της τροχαλίας που φαίνεται 
στο ακόλουθο σχήμα τη χρονική στιγμή t1 και 
ω το μέτρο της γωνιακής ταχύτητας της τροχα-
λίας την ίδια χρονική στιγμή.

R
1

R
2

r

Ζ

Σ

Μ υ

υ

υ
cm

α
cm

υ
cmυ

1

N

α
Σ

υ
Σ

Επειδή το νήμα είναι μη εκτατό και δεν ολι-
σθαίνει στην περιφέρεια της τροχαλίας, ισχύει:
 

     ή  υΣ = υ  ή  υΣ = ωr  ή  ω = 60 rad/s.
Έστω αγων το μέτρο της γωνιακής επιτάχυνσης 
της τροχαλίας. Είναι: 
ω = αγωνt1  ή  αγων = 30 rad/s2.
Έστω Δθ η γωνία στροφής της τροχαλίας στο 
χρονικό διάστημα Δt, από τη χρονική στιγμή  
t = 0 έως τη χρονική στιγμή t1. Είναι:

  
1

2

2
( )t   ή   

1

2
1

2
t  

ή  Δθ = 60 rad.
Το πλήθος των περιστροφών που εκτελεί η 
τροχαλία στο χρονικό διάστημα Δt είναι:

  
2

  ή  Ν = (30/π) περιστροφές.

γ.	 Έστω υ
cm

 το μέτρο της ταχύτητας του κέ-
ντρου μάζας του δίσκου τη χρονική στιγμή t1 
και   το μέτρο της γωνιακής του ταχύτητας 
την ίδια χρονική στιγμή. Το σημείο επαφής Ζ 
του νήματος με τον δίσκο έχει τη χρονική στιγ-
μή t1 ταχύτητα υ

cm
,  λόγω της μεταφορικής  

κίνησης του δίσκου, και γραμμική ταχύτητα 


υ
1
,  λόγω της στροφικής κίνησης του δίσκου. Η 

ταχύτητα   του σημείου Ζ τη χρονική στιγμή 
t1 δίνεται από τη σχέση:   

    
cm 1

.

Το σημείο Μ της περιφέρειας της τροχαλίας 
που φαίνεται στο προηγούμενο σχήμα έχει 
τη χρονική στιγμή t1 γραμμική ταχύτητα   .  
Επειδή το νήμα είναι μη εκτατό και δεν ολι-
σθαίνει στην περιφέρεια της τροχαλίας και 
στην περιφέρεια της κυκλικής εγκοπής, ισχύει:
 

   1   ή    

  
cm
  

1
 

ή      R R r
1 2

ή     ( )R R r
1 2

 (1).
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Έστω    το μέτρο της γωνιακής επιτάχυν-
σης του δίσκου και αcm το μέτρο της επιτάχυν-
σης του κέντρου μάζας του δίσκου. Επειδή ο 
δίσκος κυλίεται χωρίς να ολισθαίνει, ισχύει:
 cm

R 
1
 (2).

Παραγωγίζοντας τη σχέση (1) προκύπτει:

d

dt
R R

d

dt
r


  

( )
1 2

ή      ( )R R r
1 2

  ή    5
2

rad s/ .

Με αντικατάσταση των τιμών των μεγεθών 
στη σχέση (2) προκύπτει: αcm = 2 m/s2.

δ.	 Με αντικατάσταση των τιμών των μεγε-
θών στη σχέση (1) προκύπτει: ω  = 10 rad/s.

ε.	 Έστω    η γωνία που διαγράφει ο δί-
σκος στο χρονικό διάστημα Δt, από τη χρονική  
στιγμή t = 0 έως τη χρονική στιγμή t1. Είναι:

    
1

2

2
( )t   ή      

1

2
1

2
t  

ή     10 rad.

Το μήκος του νήματος που έχει ξετυλιχθεί από 
την περιφέρεια της κυκλικής εγκοπής στο χρο-
νικό διάστημα Δt είναι:   R

2
   ή   = 2 m.

80. α. Έστω ω το μέτρο της γωνιακής ταχύτη-
τας του δίσκου τη χρονική στιγμή t1 και υcm το 
μέτρο της ταχύτητας του κέντρου μάζας του 
την ίδια χρονική στιγμή.

φ

Σ

R

Ζ

r

υcm

υ

υΣ

Σύμφωνα με το σχήμα, ισχύει: 
 

     ή    

    
cm

  ή      
cm

ή     R r  ή  



R r
 ή  ω = 20 rad/s.

β. Έστω Δx η μετατόπιση του σώματος Σ  
από τη χρονική στιγμή t = 0 έως τη χρονική 

στιγμή t1. Είναι:   h

x
  ή  Δx = 1 m.

φ

φ

Σ

r

Σ

h

Δx
t1

t = 0

Είναι:  x t 1

2
1

2  (1) και υΣ = αΣt1 (2). 

Επιλύοντας το σύστημα των εξισώσεων (1) 
και (2) προκύπτει: αΣ = 2 m/s2.

γ. Από την επίλυση του συστήματος των εξι-
σώσεων (1) και (2) προκύπτει ότι t1 = 1 s.  
Έστω αγων το μέτρο της γωνιακής επιτάχυνσης 
του δίσκου.
Είναι: ω = αγωνt1  ή  αγων = 20 rad/s2. 

Επειδή ο δίσκος κυλίεται χωίς να ολισθαίνει, 
ισχύει αcm = αγωνR  ή  αcm = 4 m/s2.

δ. Επειδή το μέτρο της επιτάχυνσης του κέ-
ντρου μάζας του δίσκου είναι μεγαλύτερο από 
το μέτρο της επιτάχυνσης του σώματος Σ, το 
νήμα κατά τη διάρκεια της κίνησης του συστή-
ματος δίσκος – σώμα Σ τυλίγεται στην περιφέ-
ρεια της κυκλικής εγκοπής. Έστω Δθ η γωνία 
στροφής του δίσκου από τη χρονική στιγμή  
t = 0 έως της χρονική στιγμή t1.
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Είναι: �� �����
1

2
1

2
t   ή  Δθ = 10 rad. 

Το μήκος   του νήματος που έχει τυλιχθεί 
στην περιφέρεια της κυκλικής εγκοπής από 
τη χρονική στιγμή t = 0 έως τη χρονική στιγ-
μή t1 υπολογίζεται από τη σχέση:   r   ή  
 =1 .m  Το μήκος  2  του (τεντωμένου) τμή-
ματος του νήματος που δεν είναι τυλιγμένο 
στην περιφέρεια της κυκλικής εγκοπής τη χρο-
νική στιγμή t2 είναι:   

2 1
    ή  2 = 1 m.

81. α. Επειδή η ράβδος ΑΓ εφάπτεται στο 
ανώτατο σημείο Ζ του δίσκου Δ1, η ταχύτητά 
της   θα είναι κάθε χρονική στιγμή ίση με 
την ταχύτητα  ( )1

 του ανώτερου σημείου  
Ζ του δίσκου Δ1. Επομένως:
 

  
(1)

 ή    

    
cm(1)

  

ή  υΑΓ = υcm(1) + υ (1).

A Γ

K2
K1

Δ1 Δ2
R1

R2

Ζ Ν
r

υΑΓ

υcm(1)

υcm(1)

υ

υcm(2)

υcm(2)

υ

Επειδή ο δίσκος Δ1 κυλίεται χωρίς να ολισθαί-
νει, ισχύει: υcm(1) = ω1R1. Επομένως, από τη 
σχέση (1) προκύπτει:

υΑΓ = ω1R1 + ω1R1  ή  υΑΓ = 2ω1R1

ή  υΑΓ = 2υcm(1)  ή  d

dt

d

dt

cm 
  2

1( )

ή  α = 2αcm(1)  ή  αcm(1) = 0,3 m/s2.

β. Από το σχήμα προκύπτει ότι: 2R1 = R2 + r 
ή  r = 0,2 m. Η ταχύτητα   της ράβδου εί-
ναι ίση κάθε χρονική στιγμή με την ταχύτητα 


 (2)
 του ανώτατου υλικού σημείου Ν του 

κυκλικού εξογκώματος του δίσκου Δ2. Επομέ-
νως, είναι:
 

  
( )2

  ή    

     
cm( )2

ή  υΑΓ = υcm(2) + ω2r (2). 

Επειδή ο δίσκος Δ2 κυλίεται χωρίς να ολισθαί-
νει ισχύει: υcm(2) = ω2R2. Επομένως από τη σχέ-
ση (2) προκύπτει:

υΑΓ = ω2R2 + ω2r   ή  υΑΓ = ω2(R2 + r)

ή  


  cm

R
R r

( )

( )
2

2

2

ή  d

dt

d

dt

R r

R

cm 
  ( )2 2

2

ή    
cm

R r

R
( )2

2

2

  ή   
cm

R

R r
( )2

2

2




ή  αcm(2) = 0,4 m/s2.

γ. Το κέντρο μάζας της ράβδου από τη χρο-
νική στιγμή t = 0 έως τη χρονική στιγμή t1 
μετατοπίζεται κατά Δxρ = ΔxΔ1

 + d (3), όπου 
ΔxΔ1

 η μετατόπιση του κέντρου μάζας του δί-
σκου Δ1 από τη χρονική στιγμή t = 0 έως τη 
χρονική στιγμή t1. Από τη σχέση (3) έχουμε: 
1

2

1

2
1

2

1 1

2 t t d
cm

 
( )

  ή  t1 = 2 s.

Έστω αγων(1) το μέτρο της γωνιακής επι-
τάχυνσης του δίσκου Δ1. Επειδή ο δίσκος 
Δ1 κυλίεται χωρίς να ολισθαίνει, ισχύει:  
αcm(1) = αγων(1)R1  ή  αγων(1) = 1 rad/s2. Το μέ-

τρο ω1 της γωνιακής ταχύτητας του δίσκου 

Δ1 τη χρονική στιγμή t1 είναι ω1 = αγων(1)t1  ή   
ω1 = 2 rad/s.

δ. Έστω αγων(2) το μέτρο της γωνιακής επιτά-
χυνσης του δίσκου Δ2 τη χρονική στιγμή t1. 
Επειδή ο δίσκος Δ2 κυλίεται χωρίς να ολισθαί-
νει, ισχύει:
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αcm(2) = αγων(2)R2  ή  αγων(2) = 1 rad/s2.

Η γωνία στροφής Δθ2 του δίσκου Δ2 από τη 
χρονική στιγμή t = 0 έως τη χρονική στιγμή t1 
υπολογίζεται από τη σχέση:

 2 2 1

21

2


( )
t   ή  Δθ2 = 1 rad.

ε. Έστω ω2 το μέτρο της γωνια-
κής ταχύτητας του δίσκου Δ2 τη χρο-
νική στιγμή t1. Είναι: ω2 = αγων(2)t1  ή   
ω2 = 2  rad/s. Έστω Β το ανώτατο σημείο του 
δίσκου Δ2 τη χρονική στιγμή t1. Η ταχύτητα 


  του σημείου Β τη χρονική στιγμή t1 υπο-
λογίζεται από τη σχέση: 

Γ

K2

Δ2

R2

r

B

υΑΓ

υcm(2)

υcm(2)

υ

t1

  

  
B cm
  

( )2
 (3), όπου    η γραμμική τα-

χύτητα του σημείου Β τη χρονική στιγμή t1. 
Από τη σχέση (3) προκύπτει: 
     

cm( )2
  ή  υΒ = ω2R2 + ω2R2  

ή  υΒ = 2ω2R2  ή  υΒ = 0,8 2 m/s.

82. α. Είναι: x t 1

2
1

2   ή  α = 2 m/s2. 

Έστω υ το μέτρο της σανίδας τη χρονική στιγ-
μή t1. Είναι: υ = αt1  ή  υ = 4 m/s.

β. Έστω ω1 το μέτρο της γωνιακής ταχύτητας 
του δίσκου (1) τη χρονική στιγμή t1. Επειδή η 
σανίδα δεν ολισθαίνει σε σχέση με τον δίσκο 
(1), η ταχύτητά της τη χρονική στιγμή t1 είναι 
ίση με την ταχύτητα του ανώτατου σημείου 

του δίσκου (1). 
Επομένως:  

 
( )1

  ή  υ = ω1R1  
ή  ω1 = 40 rad/s.
Έστω ω2 το μέτρο της γωνιακής ταχύτητας του 
δίσκου (2) τη χρονική στιγμή t1. Επειδή η σα-
νίδα δεν ολισθαίνει σε σχέση με τον δίσκο (2), 
η ταχύτητά της τη χρονική στιγμή t1 είναι ίση 
με την ταχύτητα του ανώτατου σημείου του  
δίσκου (2). Επομένως:  

 
( )2

 (1). Επει-
δή ο δίσκος (2) κυλίεται χωρίς να ολισθαίνει, 
ισχύει:  

  ( ) ( )2 2
2

cm
 (2), όπου υ

cm(2)
 η τα-

χύτητα του κέντρο μάζας του δίσκου (2) τη 
χρονική στιγμή t1. Επομένως, από τις σχέσεις 
(1) και (2) έχουμε:  

  2
cm

  ή  υ = 2ω2R2

ή  ω2 = 10 rad/s.

γ. Είναι: ω1 = αγων(1)t1  ή  αγων(1) = 20 rad/s2.

δ. Είναι: ω2 = αγων(2)t1  ή  αγων(2) = 5 rad/s2. Επει-

δή ο δίσκος (2) κυλίεται χωρίς να ολισθαίνει, 
ισχύει: αcm = αγων(2)R2  ή  αcm = 1 m/s2.

ε. Έστω Δθ η γωνία στροφής του δίσκου (2) 
από τη χρονική στιγμή t = 0 έως τη χρονική 
στιγμή t1.

Είναι:   1

2
2 1

2

( )
t   ή  Δθ = 10 rad.

Το πλήθος των περιστροφών που εκτελεί ο δί-
σκος (2) από τη χρονική στιγμή t = 0 έως τη 
χρονική στιγμή t1 είναι: 

N  
2

  ή  Ν = (5/π) περιστροφές. 
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2.3	 Ροπή Δύναµης

ΘΕΜΑΤΑ Α

Α.	Θέµατα πολλαπλής επιλογής

  3. β   4. δ   5. γ   6. β   7. β

  8. δ   9. γ 10. α 11. β 12. δ

13. γ 14. δ 15. γ 16. γ 17. δ

18. α 19. β

Β.	Θέµατα του τύπου Σωστό/Λάθος

20. α. Λ β. Σ γ. Σ δ. Σ ε. Λ

21. α. Σ β. Σ γ. Σ δ. Λ ε. Σ

22. α. Λ β. Σ γ. Σ δ. Λ ε. Σ

23. α. Λ β. Λ γ. Λ δ. Σ ε. Σ

24. α. Σ β. Σ γ. Λ δ. Σ
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25. Σωστή επιλογή είναι η α. 

Θεωρώντας ως θετική φορά περιστροφής την 
αντίθετη από τη φορά περιστροφής των δει-
κτών του ρολογιού, έχουμε:

        
F F F
1 2 3

  ή  � ��� � � � �F x F x
2 3

3  

ή  � ��� � � � �2 3Fx Fx   ή  � ��� � � �Fx

ή  Fx.Στ(Α) =

26. Σωστή επιλογή είναι η γ. 

Αν θεωρήσουμε θετικές τις ροπές των δυνά-
μεων που τείνουν να περιστρέψουν τον δίσκο 
αντίθετα από τη φορά περιστροφής των δει-
κτών του ρολογιού, έχουμε:

� ��� � � � � �F R FR F R
3 1 2

  

ή  � ��� � � � �4 2FR FR FR   ή  Στ(Κ) = +FR.

27. Σωστή επιλογή είναι η γ.

Βλέπε θεωρία: «Ροπή ζεύγους δυνάμεων».

28. Σωστή επιλογή είναι η β.

Οι δυνάμεις 


F
1
 και 



F
2
 αποτελούν ζεύγος δυ-

νάμεων. Η ροπή του ζεύγους των δυνάμεων 


F
1
 και 



F
2
 είναι η ίδια ως προς οποιοδήποτε 

σημείο του επιπέδου τους και αν υπολογιστεί 
και έχει μέτρο που ισούται με το γινόμενο του 
μέτρου της μιας από τις δύο δυνάμεις επί την 
απόσταση d των φορέων των δυνάμεων. Δη-
λαδή, είναι: Στ = F1d (1).

Α Δ

d

Γφ

F1

�
F2

Από το παραπάνω σχήμα προκύπτει ότι: 

��� �
d


  ή  d =
1

2
  (2). Επομένως, από τη 

σχέση (1), λόγω της σχέσης (2), προκύπτει:

1
2 1F��.Στ = 

29. Σωστή επιλογή είναι η α.

Οι δυνάμεις 


F
1
 και 



F
2
 αποτελούν ζεύγος δυ-

νάμεων. Το μέτρο της συνισταμένης ροπής 
του ζεύγους των δύο δυνάμεων δίνεται από τη 
σχέση: Στ = F1d (1), όπου d η απόσταση των 
φορέων των δυνάμεων. Αφού σύμφωνα με την 

εκφώνηση είναι �� � 1

2
1

FL,  από τη σχέση (1) 

προκύπτει: d
L

=
2

.

Α
K Λ

Γ

L

d
1

d

d
2

F
1

F
2
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Σύμφωνα με το σχήμα, είναι:

L = d1 + d + d2  ή  d L d d
2 1
� � �( )

ή  d L
2 4= .

30. Σωστή επιλογή είναι η α.

Αναλύουμε τη δύναμη 


F  σε δύο κάθετες με-
ταξύ τους συνιστώσες: στη συνιστώσα 



F
x

 της 
οποίας ο φορέας ταυτίζεται με τη ράβδο ΑΓ 
και στη συνιστώσα 



F
y

 που είναι κάθετη στη 
ράβδο ΑΓ. Το μέτρο της ροπής της δύναμης 



F  
ως προς το σημείο Α δίνεται από τη σχέση:

τ1 = FyL  ή  τ1 = FημφL  ή  �
1

1

2
� FL  (1).

L

FFy

Fx

Δ
ΓΑ

d1

Το μέτρο της ροπής της δύναμης 


F  ως προς το 
σημείο Δ δίνεται από τη σχέση:


2 1
 F L d

y
( )   ή   

2

2

3
 F

L

ή  
2

1

3
 FL  (2).

Με διαίρεση κατά μέλη των σχέσεων (1) και 

(2) προκύπτει: �
�

1

2

3

2
�   ή  

2
3

.τ2 = τ1
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31. Αν θεωρήσουμε ως θετικές τις ροπές των 
δυνάμεων που τείνουν να περιστρέψουν τη 
ράβδο αντίθετα από τη φορά περιστροφής των 
δεικτών του ρολογιού, έχουμε:

α. �
F

F
L

1
1

2
� �   ή  τF1

 = +1 Nm,

�
F

F
L

d
2

2

2
� � ��

�
�

�
�
�   ή  τF2

 = +1,2 Nm  και

�
F

F
L

3
3

2
� �   ή  τF3

 = –0,5 Nm.

β. Είναι: �� � � �� � �
F F F
1 2 3

  ή  Στ = +1,7 Νm.

γ. Είναι: � ��
F
1

0,  � � � ��
F

F L d
2

2
( )

ή  � � ��
F

Nm
2

3 2,  και � � ��
F

F L
3

3
  

ή  � � ��
F

Nm
3

1 .

Είναι: � � � � �� � �� � � �
F F F
1 2 3

  ή  Στ′ = +2,2 Νm.

32. Θεωρώντας ως θετικές τις ροπές των δυ-
νάμεων που τείνουν να περιστρέψουν τη ρά-
βδο αντίθετα από τη φορά περιστροφής των 
δεικτών του ρολογιού, έχουμε:

α. Είναι: �
F

Nm
1

2� � ,  �
F

Nm
2

6� � ,

�
F

Nm
3

4 5� � , ,  �
F

4

0� .

Συνεπώς, το ζητούμενο αλγεβρικό άθροισμα 
προκύπτει: Στ(Κ) = –0,5 Νm.

β. ��
F

Nm
1

3� ,  �
F

2

0� ,

�
F

Nm
3

1 5� � , ,  �
F

4

0� .

Eπομένως, το ζητούμενο αλγεβρικό άθροισμα 
προκύπτει: Στ(Μ) = +1,5 Νm.

γ. �
F
1

0� ,  �
F

Nm
2

3 6� � , ,

�
F

Nm
3

3 3� � , ,  �
F

4

0� .

Συνεπώς, το ζητούμενο αλγεβρικό άθροισμα 
προκύπτει: Στ(Ζ) = +0,3 Νm.

33. α. Είναι: 

�
F

FR
1

1
� �   ή  τF1

 = –20 Nm,

�
F

F R
2

2
� �   ή  τF2

 = +40 Nm,

�
F

F R
3

3
� �   ή  τF3

 = +10 Nm, 

τw = 0.

K
R

R

F1

F2

F3
+

β. Είναι: � �� � � � �
( )

� � � �
F F F w
1 2 3

ή  Στ(Κ) = +30 Νm.

γ. Επειδή η αλγεβρική τιμή της συνισταμένης 
ροπής των δυνάμεων που ασκούνται στον δί-
σκο είναι θετική, ο δίσκος περιστρέφεται 
αντίθετα από τη φορά περιστροφής των 
δεικτών του ρολογιού.
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34. α. Θεωρώντας ως θετικές τις ροπές των 
δυνάμεων που τείνουν να περιστρέψουν τον 
τροχό αντίθετα από τη φορά περιστροφής των 
δεικτών του ρολογιού, έχουμε:

�
F

FR
1

1
� �   ή  τF1

 = +5 Nm, 

�
F

F K
2

2
� � ( )�   ή  τF2

 = +1,2 Nm, 

�
F

F KN
3

3
� � ( )   ή  τF3

 = +10 Nm. 

β. Το ζητούμενο αλγεβρικό άθροισμα προκύ-
πτει:

�� � � �
K F F F� � � � �

1 2 3

  ή  Στ(Κ) = +3,2 Νm.

γ. Επειδή η αλγεβρική τιμή της συνισταμέ-
νης ροπής των δυνάμεων που ασκούνται στον  
τροχό είναι θετική, ο τροχός περιστρέφεται 
αντίθετα από τη φορά περιστροφής των δει-
κτών του ρολογιού.
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35. α. 

K Λ

Μ

L

F1
F1y

F1x

F3

F3x

F3y

L / 3

Δ

F2

60° 45°

+

Είναι:
� �

F F
y1 1

�   ή  �
F y

F
L

1
1

2
� �

ή  � ���
F

F
L

1
1

60
2

� � ��   ή  τF1
 = –15 Nm,  

�
F

F
L L

2
2

2 3
� � ��

�
�

�
�
�   ή  τF2

 = –4 Nm, 

� �
F F

y3 3

�   ή  �
F y

F
L

3
3

2
� �

ή  � ��
F

F
L

3
3

45
2

� � ��   ή  τF3
 = +60 Nm. 

β. Είναι: �� � � �
M F F F� � � � �

1 2 3

ή  Στ(Μ) = +41 Νm.

γ. Είναι: �� � � �
K F F F� � � � �

1 2 3

ή   
K

L
L

F L    




  0

3
45

2 3
F

ή  Στ(Κ) = +104 Νm.

36. α. 

F1 F1y

F1x

Fαξ

Μ

L

Δ
Ν

K
Λ

L / 6L / 4

F2 F3

F3x

F3y

45°

w

30°

+

Είναι: � �
F F

y1 1

�   ή  � ��
F

F
L

1
1

30
4

� � ��

ή  τF1
 = +7,5 Nm,  �

w
w

L L
� � ��

�
�

�
�
�

2 4

ή  �
w

mg
L

� �
4

  ή   τw = –9 Nm, 

�
F

F L
L L

2
2

4 6
� � � ��

�
�

�
�
�   ή  �

F
F

L

2
2

7

12
� �

ή  τF2
 = +17,5 Nm και

� �
F F

y3 3

�   ή  � ��
F

F L
L

3
3

45
4

� � � ��
�
�

�
�
�

ή  τF3
 = +11,25 Nm.

β. Είναι: � �� � � � � �
��( )

� � � � �
F F F F w
1 2 3

ή  Στ(Δ) = +27,25 Νm.

γ. Εφόσον η αλγεβρική τιμή της συνισταμέ-
νης ροπής είναι θετική, η ράβδος θα στραφεί 
αντίθετα από τη φορά περιστροφής των δει-
κτών του ρολογιού.

37. α. Σύμφωνα με την εκφώνηση, το μέτρο 
της συνισταμένης ροπής των δυνάμεων 



F
1
 

και 


F
2
 ως προς το μέσον Μ της ράβδου εί-

ναι: |Στ(Μ)| = 5 Νm. Αν θεωρήσουμε ως θετική 
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φορά την αντίθετη από τη φορά περιστροφής 
των δεικτών του ρολογιού, η αλγεβρική τιμή 
της συνισταμένης ροπής των δύο δυνάμεων ως 
προς το μέσον Μ της ράβδου είναι:

��
( )M

F
L L

F
L L

� � ��
�
�

�
�
� � ��

�
�

�
�
�1 2

2 3 2 4

ή  ��
( )M

F
L

F
L

� � �
1 2

6 4
  

ή  ��
( )M

F
L L

� � ��
�
�

�
�
�1

4 6
 

ή  ��
( )M

FL� �
5

12
1

  ή  ��
( )M

FL�
5

12
1

ή  F
L

M

1

12

5
�

��
( )   ή  F1 = 6 N.

β. Η αλγεβρική τιμή της συνισταμένης ροπής 
των δυνάμεων 



F
1
 και 



F
2
 ως προς το σημείο Κ 

υπολογίζεται από τη σχέση: 

��
( )K

F
L

F L
L

� � � ��
�
�

�
�
�1 2

3 4

ή  ��
( )K

FL FL� � �
1

3

3

4
1 1

  ή  ��
( )K

FL� �
5

12
1

  

ή  ��
( )K

FL�
5

12
1

  ή  .Nm5Στ(Κ)  =

γ. Οι δυνάμεις 


F
1
 και 



F
2
 αποτελούν ζεύγος  

δυνάμεων, οπότε η συνισταμένη ροπή τους 
είναι ανεξάρτητη από το σημείο του επιπέδου 
τους ως προς το οποίο υπολογίζεται. Επομέ-
νως, είναι: |Στ(Δ)| = |Στ(Μ)|  ή  |Στ(Δ)| = 5 Nm.

δ. Η ροπή του ζεύγους δυνάμεων δεν επηρεά­
ζει τη μεταφορική κίνηση της ράβδου, καθώς 
η συνισταμένη των δυνάμεων 



F
1
 και 



F
2
 είναι 

ίση με μηδέν �
 

F �� �0 .

Επομένως, σωστή επιλογή είναι η i: ράβδος θα 
εκτελέσει περιστροφική κίνηση γύρω από κα-

τακόρυφο νοητό άξονα που διέρχεται από το 
κέντρο μάζας της Μ.
Τα σημεία της ράβδου έχουν κάθε χρονική 
στιγμή, λόγω της περιστροφικής κίνησης της 
ράβδου, γραμμικές ταχύτητες. Έστω ότι το 
μέτρο της γωνιακής ταχύτητας της ράβδου τη 
χρονική στιγμή t1 είναι ίσο με ω.
Το μέτρο της γραμμικής ταχύτητας του ση-
μείου Α τη χρονική στιγμή t1 δίνεται από τη 
σχέση:

 
A

L L 



2 3

  ή   
A

L 1

6
 (1).

Το μέτρο της γραμμικής ταχύτητας του ση-
μείου Β τη χρονική στιγμή t1 δίνεται από τη 
σχέση:

 
B

L L 



2 4

  ή   
B

L 1

4
 (2).

Με διαίρεση κατά μέλη των σχέσεων (1) και 
(2) προκύπτει:




A

B

 2

3
  ή  υΒ = 1,5υΑ  ή  υΒ = 6 m/s.

38. Η δύναμη που ασκείται στη ράβδο από 
τον άξονα περιστροφής της δεν δημιουργεί 
ροπή. Επομένως, η μοναδική δύναμη που δη-
μιουργεί ροπή είναι το βάρος της ράβδου.

30°

30°

Θέση (Ι)

Θέση (ΙΙ)

Θέση (ΙΙΙ)

A Γ

Γ

Γ

+

wy

wx

w

w

w
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α. Στη θέση (Ι) ισχύει: 

��
A

w
L

� � �
2

  ή  ��
A

mg
L

� � �
2

ή  Στ(Α) = 10 Νm.

β. Στη θέση (ΙΙ) ισχύει: 

��
A y

w
L

� � �
2

  ή  �� ���
A

mg
L

� � � � �30
2

ή  Στ(Α) = 5 3 Νm.

γ. Στη θέση (ΙΙΙ) ισχύει: Στ(Α) = 0.
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ΘΕΜΑΤΑ A

Α.	Θέµατα πολλαπλής επιλογής

10. δ 11. γ 12. β 13. α

14. γ 15. δ 16. δ 17. δ

Β.	Θέµατα του τύπου Σωστό/Λάθος

18. α. Σ β. Σ γ. Σ δ. Σ ε. Λ

19. α. Σ β. Λ γ. Σ δ. Λ ε. Λ

2.4	Ισορροπία στερεού σώµατος
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20. Σωστή επιλογή είναι η α.

Οι δυνάμεις που ασκούνται στο σώμα Σ είναι: 
το βάρος του w

1
 και η δύναμη 



Ν  από τη ρά-
βδο. Επειδή το σώμα Σ ισορροπεί, ισχύει:

�
 

F � 0   ή  ΣFy = 0  ή  Ν – w1 = 0  ή  Ν = w1.

Οι δυνάμεις που ασκούνται στη ράβδο είναι:  
το βάρος της w στο μέσον της Κ, οι τάσεις 



Τ1 
και 



Τ2  από τα νήματα (1) και (2) αντίστοιχα 
και η δύναμη 



��  από το σώμα Σ. Είναι:

� �� �   ή  � �� w
1
.

L

L / 4

Δ
Κ Β

Σ

(2)(1)

Α

w Ν′

+

T2
T1

Επειδή η ράβδος ισορροπεί, ισχύει:

Στ(Α) = 0  ή  � � � �� �
1 2

0� � � ��w T

ή  0
2 4

0
2

� � � ��
�
�

�
�
� � �w

L
N L

L
T L

ή  � � � �w
L

w
L

T L
2

3

4
0

1 2
  ή  T w2

7
8

= .

Επειδή η ράβδος ισορροπεί, ισχύει ακόμη:

�
 

F � 0   ή  ΣFy = 0  ή  T T w N
1 2

0� � � � �

ή  T T w w
1 2 1

0� � � �   ή  T w1
5
8

= .

21. Α. Σωστή επιλογή είναι η β.

Έστω 


F
1
 και 



F
2
 οι δυνάμεις που ασκούνται 

στη ράβδο από τα υποστηρίγματα (1) και (2) 
αντίστοιχα.

F1

L

ΚA Γ
L / 3L / 6

F2

Λ

w

(2)(1)

+

Επειδή η ράβδος ισορροπεί, ισχύει:

Στ(Κ) = 0  ή  � � �
F F w
1 2

0� � �   

ή  0
6 3 2 6

0
2

� � ��
�
�

�
�
� � ��

�
�

�
�
� �F L

L L
w

L L   

ή  F
w

2

2

3
=  (1)  και �

 

F � 0   ή  ΣFy = 0  

ή  F F w
1 2

0� � �   ή  F
w

1

3
=  (2).

Με διαίρεση κατά μέλη των σχέσεων (1) και 

(2) προκύπτει: F
F
1

2

1
2

= .

Β. Σωστή επιλογή είναι η β.

F′1
ΚA Γ

F′2
Λ

w
w1

(2)(1)

+

Σ

Ν′

Ν
x
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Οι δυνάμεις που ασκούνται στο σώμα Σ είναι: 
το βάρος του w

1
 και η κάθετη δύναμη 



N  από 
τη ράβδο. Ισχύει: �

 

F � 0   ή  ΣFy = 0

ή  Ν – w1 = 0  ή  Ν = w1  ή  Ν = w.

Το μέτρο της δύναμης 


��  που ασκείται στη ρά-
βδος από το σώμα Σ είναι: � �N N  ή  � �N w.

Έστω x η μέγιστη απόσταση δεξιά του ση­
μείου Λ της ράβδου όπου μπορούμε να τοπο-
θετήσουμε το σώμα Σ, ώστε η ράβδος να μην 
ανατραπεί. Στην περίπτωση αυτήν, το μέτρο 
της δύναμης που ασκείται στη ράβδο από το 
υποστήριγμα (1) είναι: � �F

1
0.

Ισχύει: Στ(Λ) = 0  ή  � � � �� � �� � � �
F w F
1 2

0�   

ή  0 0 0
2 3

� ��
�
�

�
�
� � � � �w

L L
x�

ή  w
L

wx
6
=   ή  x

L
=

6
.

Επειδή x
L<
3

,  αν το σώμα Σ τοποθετηθεί στο 

άκρο Γ της ράβδου, η ράβδος θα ανατραπεί.

22. Α. Σωστή επιλογή είναι η γ. 

Έστω ′w  το μέγιστο βάρος ενός σώματος Σ 
αμελητέων διαστάσεων το οποίο μπορούμε να 
τοποθετήσουμε στο άκρο Γ της ράβδου, χωρίς 
η ράβδος να ανατραπεί. Στην περίπτωση αυ-
τήν, η δύναμη που ασκείται στη ράβδο από το 
υποστήριγμα (1) είναι ίση με μηδέν 

 

F
1

0�� �.

Α Γ

Δ

L / 4

F2F1

w w′

+

(2)(1)

Επειδή το σύστημα ράβδος – σώμα Σ ισορρο-
πεί, ισχύει: Στεξωτ(Δ) = 0  ή  � � � �

F w F w
1 2

0� � � ��  

ή  0
4

0
4

0� � � � �w
L

w
L   ή   w w.

B. Σωστή επιλογή είναι η α.

Α Γ
Δ

L

L / 4
ww′

F′2F′1 +

(1) (2)

Επειδή το σύστημα των σωμάτων ισορροπεί, 
ισχύει: Στεξωτ(Α) = 0  ή  � � � �� � �� � � �

F w w F
1 2

0

ή  0 0
2

3

4
0

2
� � � � �w

L
F

L   ή   F w2
2
3

.

23. Α. Σωστή επιλογή είναι η γ. 

Στην περίπτωση αυτήν, η δύναμη που ασκεί-
ται στη δοκό από το υποστήριγμα που είναι 
τοποθετημένο στο σημείο Κ είναι 

 

F
1

0= .

Α Γ
Λ

x

Κ

L
L / 4L / 4

w

w1

F2F1

+

(1) (2)

Επειδή το σύστημα δοκός – σώμα Σ ισορροπεί, 
ισχύει: Στεξωτ(Λ) = 0  ή  � � � �

F w F w
1 2 1

0� � � �  

ή  0
4

0
4

0
2

1
� ��

�
�

�
�
� � � ��

�
�

�
�
� �w

L L
w

L
x   

ή  x = 0,2L.
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Β. Σωστή επιλογή είναι η γ.

Ισχύει: �F




� 0   ή  ΣFy = 0  ή  F F w w
1 2 1

0� � � �   

ή  F2 = 6w.

24. Α. Σωστή επιλογή είναι η γ. 

Έστω 


F
3
 η δύναμη που ασκείται στη ράβδο 

από τον άξονα περιστροφής της.

A
Γ

30°

F1 F2

F2x

F2y

F3x

F3yF3

Ο

L1 L2 +

Επειδή η ράβδος ισορροπεί, ισχύει:

Στ(Ο) = 0  ή  � � �
F F F
1 2 3

0� � �   

ή  � � ��FL F L
y1 1 2 2

0 0   ή  FL F L
1 1 2 2

30� ���   

ή  L

L

F

F

1

2

2

1

30
�

���   ή  L
L
1

2

2= .

Β. Σωστή επιλογή είναι η α.

Επειδή η ράβδος ισορροπεί, ισχύει:

�
 

F � 0   ή  ΣFx = 0 (1)  και  ΣFy = 0 (2).

Από τη σχέση (1) έχουμε:

ΣFx = 0  ή  F F
x x2 3

0� �   ή

F F
x3 2

30� ����   ή  F F
x3

2 3= .

Από τη σχέση (2) έχουμε:

ΣFy = 0  ή  F F F
y y1 2 3

0� � �   

ή  F F F
y3 1 2

30� � ���   ή  F3y = 3F.

Το μέτρο της δύναμης 


F
3
 υπολογίζεται από τη 

σχέση: F F F
x y3 3

2

3

2� �   ή  F F3 21= .

25. Α. Σωστή επιλογή είναι η α.

Οι δυνάμεις που ασκούνται στη ράβδο είναι:  
το βάρος της w  στο μέσον της Κ, η τάση 



T  
από το νήμα και η δύναμη 



F  από την άρ-
θρωση.

+

A

K

Γ

φ

Tx

Ty
T

Fy

Fx

F

w

L

Επειδή η ράβδος ισορροπεί, ισχύει:

Στ(Α) = 0  ή  � � �
F w T
� � � 0   

ή  0
2

0� � �w
L

T L
y

  ή  w
T

2
� ���   ή  T = w.

Β. Σωστή επιλογή είναι η α.

Επειδή η ράβδος ισορροπεί, ισχύει: 

�
 

F � 0   ή  ΣFx = 0 (1)  και  ΣFy = 0 (2).

Από τη σχέση (1) έχουμε:

ΣFx = 0  ή  F T
x x
� � 0   

ή  Fx = Tσυνφ  ή  F w
x
=

3

2
.

Από τη σχέση (2) έχουμε:

ΣFy = 0  ή  F T w
y y
� � � 0   

ή  F w T
y
� � ���   ή  F

w

y
=

2
.

Συνεπώς, το μέτρο της δύναμης 


F  προκύπτει: 

F F F
x y

� �2 2   ή  F = w.
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Γ. Σωστή επιλογή είναι η β.

+

A

K Σ

Γ

φ

T
θx

T
θy

T
θ

F′
y

F′
x

F′

w

L / 4w′

Έστω  ′w  το μέγιστο βάρος ενός πολύ μικρού 
σώματος Σ που μπορούμε να τοποθετήσουμε 

σε απόσταση d
L

=
4

 από το άκρο Γ της ρά-

βδου, ώστε να μην κοπεί το νήμα. Επειδή το 
σύστημα ράβδος – σώμα Σ ισορροπεί, ισχύει:

Στεξωτ(Α) = 0  ή     
    

F w w T
0   

ή  0
2

3

4
0� � � � �w

L
w

L
T L

y�   

ή  � � � � �w
L

w
L

w L
2

3

4
2 0���   ή   w w2

3
.

26. Α. Σωστή επιλογή είναι η β.

Οι δυνάμεις που ασκούνται στη ράβδο είναι: 
το βάρος της w  στο μέσον της Κ, η δύναμη 


F  από τον λείο κατακόρυφο τοίχο και η δύ-
ναμη 



Fδ  από το δάπεδο, η οποία αναλύεται 
σε δύο κάθετες μεταξύ τους συνιστώσες: μία 
οριζόντια συνιστώσα που είναι η στατική τρι-
βή 



T��  και μία κατακόρυφη συνιστώσα που 
είναι η κάθετη δύναμη 



N  από το δάπεδο.

A

Κ

Λ

Γ
Ζ
w

x

h

F

Fδ N
Tσ

y

x

+φ

Επειδή η ράβδος ισορροπεί, ισχύει:

Στ(Γ) = 0  ή  � � �
�F F w
� � � 0   

ή  0 0� � �F w( ) ( )�� ��   ή  � � �Fh wx 0

ή  FL w
L

�� ���� ��
2

  ή  F w=
3

2
.

Επειδή η ράβδος ισορροπεί, ισχύει ακόμη:

�
 

F � 0   ή  ΣFx = 0 (1) και ΣFy = 0 (2).

Από τη σχέση (1) προκύπτει:

ΣFx = 0  ή  Τστ = F  ή T w� �
3

2
.

Από τη σχέση (2) προκύπτει:

ΣFy = 0  ή  Ν – w = 0  ή  N = w.

Για το μέτρο της στατικής τριβής ισχύει: 

T N
s�� ��   ή  � ��

s

T

N
�   ή  �

s
�

3

2

ή  μs min  
3
2

.

Β. Σωστή επιλογή είναι η β.

Επειδή η ράβδος ισορροπεί, ισχύει:

Στ(Γ) = 0  ή  � � �Fh wx 0   

ή  FL w
L

��� �����
2

  ή  F
w

�
2

����

���
.

Επειδή η ράβδος ισορροπεί, ισχύει ακόμη:

ΣFx = 0  ή  F = Τστ  ή  T
w

��

����

���
�

2

και  ΣFy = 0  ή  Ν = w.
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Για το μέτρο της στατικής τριβής ισχύει: 

T N
s�� ��   ή  w

w
s

2

����

���
��   

ή  ���

���� �
�

1

2
s

  ή  ��� �1   ή  εφθmin = 1

ή  θmin = 45°.

27. Σωστή επιλογή είναι η γ.

Οι δυνάμεις που ασκούνται στη σκάλα είναι: 
το βάρος της w  στο μέσον της Κ, η δύναμη 



F  
από τον τοίχο, η δύναμη 



Fδ  από το δάπεδο που 
αναλύεται σε δύο κάθετες μεταξύ τους συνι-
στώσες, τη στατική τριβή 



��� και την κάθετη 
προς το δάπεδο δύναμη 



Ν, και η δύναμη που 
ασκείται από το παιδί, η οποία είναι ίση με το 
βάρος του w

1
.  

Επειδή η σκάλα είναι έτοιμη να ολισθήσει, 
ισχύει: Τστ = Τορ  ή  Τστ = μsN  ή  Τστ = 0,5Ν (1).

A

Γ

w

d
h

Κ

y

x

F

Fδ N

Tσ

w1 +

φ

Επειδή η σκάλα ισορροπεί, ισχύει:

�
 

F � 0   ή  ΣFx = 0 (2) και  ΣFy = 0 (3).

Από τη σχέση (3) έχουμε:

ΣFy = 0  ή  N = w + w1  ή  N = 4w.

Συνεπώς, από τη σχέση (1) προκύπτει:

Tστ = 2w.

Από τη σχέση (2) έχουμε:

ΣFx = 0  ή  F = Tσ  ή  F = 2w.

Επειδή η ράβδος ισορροπεί, ισχύει ακόμη:

Στ(Γ) = 0  ή  � � � �
�F F w w
� � � �

1

0  

ή  0 0
1

� � � �Fd wx w y   

ή  � � � �FL w
L

w y��� ����
2

0
1

  

ή  y L= 0 25 2, .

Συνεπώς, το μέγιστο ύψος h πάνω από το ορι-
ζόντιο δάπεδο στο οποίο μπορεί να ανέβει το 
παιδί υπολογίζεται από τη σχέση:

��� �
h

y
  ή  h = y  ή  h L= 0 25 2, .

28. Α. Σωστή επιλογή είναι η β. 
Οι δυνάμεις που ασκούνται στο σύστημα 
τροχαλία – σώμα Σ φαίνονται στο παρακάτω 
σχήμα.

R
Κ

Σ

w1

w2

FF1y

F1x

F1

T

T′

+

Επειδή το σώμα Σ ισορροπεί, ισχύει:

�
 

F � 0   ή  ΣFy = 0  ή  T w� �
2

0   ή  T = w (1).

Επειδή η τροχαλία ισορροπεί, ισχύει:

Στ(Κ) = 0  ή     
w F F T

1 1

0      

ή  0 0 0� � � � �FR T R   ή  F T� �  (2).

Επειδή το νήμα είναι αβαρές, ισχύει: � �T T.
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Επομένως, από τις σχέσεις (1) και (2) έχουμε:

F = T  ή  F = w.

Β. Σωστή επιλογή είναι η γ.

Έστω F



1  η δύναμη που ασκείται στην τροχα-
λία από τον άξονα περιστροφής της. Επειδή η 
τροχαλία ισορροπεί, ισχύει:

�
 

F � 0   ή  ΣFx = 0 (3)  και  ΣFy = 0 (4).

Από τη σχέση (3) έχουμε:

F F
x1

0� �   ή  F1x = w.

Από τη σχέση (4) έχουμε:

F T w
y1 1

0� � � �   ή  F1y = T + w1  ή  F1y = 3w.

Συνεπώς, το μέτρο της δύναμης F



1  είναι: 

F F F
x y1 1

2

1

2� �   ή  F w1 10= .

29. Σωστή απάντηση είναι η β. 

h
R

A

x

Z

Κ

F
Fσ

N
w

Tστ

Για να υπερπηδήσει ο τροχός το σκαλοπάτι,  
θα πρέπει το μέτρο της ροπής της δύναμης 



F  
ως προς το σημείο Α να είναι μεγαλύτερο ή 
οριακά ίσο με το μέτρο της ροπής του βάρους 
του w  ως προς το ίδιο σημείο. Συνεπώς, πρέ-

πει να ισχύει: � �
F w

( ) ( )� �
�   ή  FR wx≥  (1).

Από το ορθογώνιο τρίγωνο ΚΖΑ του παραπά-
νω σχήματος προκύπτει:

R x R h
2 2 2� � �� �   ή  x R=

7

4
 (2).

Από τη σχέση (1) προκύπτει:

FR w R≥
7

4
  ή  F w≥

7

4
.

Συνεπώς, η ελάχιστη τιμή του μέτρου της δύ-

ναμης 


F  είναι: F wmin =
7
4

.

30. Σωστή επιλογή είναι η β.

Για να υπερπηδήσει ο τροχός το σκαλοπάτι, 
πρέπει το μέτρο της ροπής της δύναμης 



F  ως 
προς το σημείο επαφής Α του τροχού με το 
σκαλοπάτι να είναι μεγαλύτερο από το μέτρο 
της ροπής του βάρους του τροχού ως προς το 
ίδιο σημείο.

F

R
Δ

K

Ζ

AΛ
d

hx

Fσ

Tστ

Νw

Δηλαδή, πρέπει:

� �
F A w A( ) ( )

�   ή  F d h wx( )� �  (1).

Από το ορθογώνιο τρίγωνο ΚΛΑ, έχουμε: 

R x R h
2 2 2� � �( )   ή  x R R h� � �2 2

( )   

ή  x h R h� �( )2   ή  x R=
3

2
 (2).
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Από τη σχέση (1), λόγω της σχέσης (2), προ-

κύπτει: FR w R>
3

2
  ή  F w> 3

2
.

31. Α. Σωστή επιλογή είναι η α.

Οι δυνάμεις που ασκούνται στη ράβδο είναι: 
το βάρος της w  στο μέσον της Κ, η δύναμη 


Ν1  από το σκαλοπάτι, η οποία είναι κάθετη 
στη ράβδο (το σκαλοπάτι είναι λείο) και η δύ-
ναμη 



Fδ  από το δάπεδο που αναλύεται σε μια 
οριζόντια συνιστώσα 



T��  (στατική τριβή) και 
σε μια κάθετη στο δάπεδο συνιστώσα 



N
2
.  

y

y′
xx′ Ο

+

φ

φ

L – d

d

Δ

K

Γ

ΑΖ

w

Fδ
Ν2

Ν1

Ν1x

Tστ

Ν1y

Επειδή η ράβδος ισορροπεί, ισχύει:

Στ(Α) = 0  ή  � � �
��

1

0� � �
w F

  

ή  � � � � �N L d w AZ
1

0 0( ) ( )   

ή  w
L

N
L

2

5

6
1

���� �   ή  N1 = 0,3w.

Β. Σωστή επιλογή είναι η α.
Επειδή η ράβδος ισορροπεί, ισχύει ακόμη:

�
 

F � 0   ή  ΣFx = 0 (1) και ΣFy = 0 (2).

Από τη σχέση (1), προκύπτει: Ν1x – Tστ = 0  

ή  Ν1x = Tστ  ή  Ν1ημφ = Τστ  ή  T w  0 15 3, . 

Από τη σχέση (2), προκύπτει:

Ν1y + N2 – w = 0  ή  N w N
2 1
� � ����

ή  Ν2 = 0,85w.

Για το μέτρο της στατικής τριβής, ισχύει:

T N
s�� ��

2
  ή  � ��

s

T

N
�

2

  

ή  �
s

w

w
�

0 15 3

0 85

,

,
  ή  �

s
�

3 3

17
.

32. Σωστή επιλογή είναι η γ.

Α Δ
ΓΒ

K

L / 4 L / 4

υ

+
Ν

x

F
2

F
1

w
1

w

Ν′

Ο κύβος κατά τη διάρκεια της κίνησής του 
πάνω στη ράβδο δέχεται τη δύναμη του βά-
ρους του w

1
 και την κάθετη δύναμη 



Ν  από 
τη ράβδο. Ισχύει:

ΣFy = 0  ή  Ν = w1  ή  Ν = mg  ή  Ν = 2Μg.

Η ράβδος δέχεται τις δυνάμεις 


F
1
 και 



F
2
 από 

τα υποστηρίγματα που έχουν τοποθετηθεί στα 
σημεία της Β και Γ αντίστοιχα, το βάρος της 
w  στο μέσον της Κ και την κάθετη δύναμη 


′N  από τον κύβο ( ).
 

� � �� �  

Έστω ότι τη χρονική στιγμή t ο κύβος έχει 
μετατοπιστεί προς τα δεξιά κατά x, όπως φαί-
νεται στο παραπάνω σχήμα. Επειδή η ράβδος 
ισορροπεί, ισχύει: 

Στ(Γ) = 0  ή  � � � �
F w N F
1 2

0� � � ��
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ή  � � � � ��
�
�

�
�
� �F

L
w

L
N

L
x

1

2 4 2
0   

ή  1

2

1

4
2

2
1

FL MgL Mg
L

x� � ��
�
�

�
�
�

ή  F Mg Mg
x

L
1

2 5 4 ,  (1).

Η ράβδος ανατρέπεται όταν η δύναμη που δέ-
χεται από το υποστήριγμα που έχει τοποθετη-
θεί στο σημείο Β γίνει ίση με μηδέν ( ).

 

F
1

0=  
Επομένως από τη σχέση (1) για F1 = 0, προκύ-

πτει: 2 5 4 0, Mg Mg
x

L
� �   ή  x L=

5

8
.

Επειδή ο κύβος κινείται με σταθερή ταχύτητα 
μέτρου υ πάνω στη ράβδο, η χρονική στιγμή t1 
στην οποία ανατρέπεται η ράβδος υπολογίζε-

ται από τη σχέση:   x

t
1

  ή  t
x

1



ή  t L

1
5
8

=
υ

.

33. Α. Σωστή επιλογή είναι η β.

Οι δυνάμεις που ασκούνται στο σώμα Σ είναι: 
το βάρος του w

1
 και η δύναμη από το ελα-

τήριο 


F�� .  Επειδή το σώμα ισορροπεί, ισχύει:

ΣF = 0  ή  w1 = Fελ  ή  F
Mg

�� �
2

.

Οι δυνάμεις που ασκούνται στη ράβδο είναι: 

η δύναμη 


F
1
 από το υποστήριγμα (1), η δύνα-

μη 


F
2
 από το υποστήριγμα (2), το βάρος της 

w  στο μέσον της Κ και η δύναμη 


�F��  από το 

ελατήριο. Για τις δυνάμεις 


F��  και 


�F�� ,  ισχύει:
 

� � �F F�� ��   ή  � �F F�� ��   ή  � �F
Mg

��
2

 (1).

ΔK

(2)(1)

Γ

Δ�

Α

L

Θ.Φ.Μ.

Θ.Ι.
Σ

F1
F2

L / 4

w

w1

Fελ

F′ελ

+

Επειδή η ράβδος ισορροπεί, ισχύει:

Στ(Δ) = 0  ή  � � � �
��F w F F

1 2

0� � � ��   

ή   




 




   F L

L
w

L L
F

L

1
4 2 4

0
4

0

ή, λόγω της σχέσης (1)

3

4

1

4

1

8
1

FL MgL MgL� �   ή  F Mg
1 6
= .

Β. Σωστή επιλογή είναι η β.

Η ράβδος ανατρέπεται, όταν η δύναμη από το 
υποστήριγμα (1) γίνει ίση με μηδέν ( ).

 

F
1

0=  
Έστω w

1
 το μέγιστο βάρος ενός σώματος 

  που μπορούμε να στερεώσουμε στο κάτω 
άκρο του ελατηρίου, ώστε η ράβδος να μην 
ανατραπεί. Επειδή η ράβδος ισορροπεί, ισχύει:

Στ(Δ) = 0  ή     
F F F w

1 2

0     

ή  0 0
4 2 4

0    




F

L
w

L L

  

ή   F L MgL

4 4
  ή   F Mg .

Επειδή το σώμα   ισορροπεί, ισχύει:


 

F  0   ή  ΣFy = 0  ή  w1 = Fελ  ή  w F
1
 

ή  w1 = Mg.
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34. Σωστή επιλογή είναι η γ.
Οι δυνάμεις που ασκούνται στο σημειακό 
σώμα Σ κατά τη διάρκεια της κίνησής του 
προς το άκρο Α της ράβδου είναι: το βάρος του 


w
1
 και η δύναμη 



Ν  από τη ράβδο. Αναλύου-
με το βάρος w

1
 σε δύο κάθετες μεταξύ τους 

συνιστώσες w
x1

 και w
y1
,  όπως φαίνεται στο 

ακόλουθο σχήμα.

φ

A

Γ

υ

φ

Ν

w1y

w1

w1x

Είναι: 
 

F
y
 0   ή  N = w1y  ή  N = mgσυνφ

ή  Ν = Μgσυνφ. 

Οι δυνάμεις που ασκούνται στη ράβδο κατά 
τη διάρκεια της κίνησης του σώματος Σ προς 
το άκρο Α της ράβδου είναι: το βάρος της w  
στο μέσον της Κ, η δύναμη 



F  από τον τοί-
χο, η δύναμη 

  

     ( )  από το σώμα Σ  
και η δύναμη 



Fδ  από το δάπεδο που αναλύε-
ται σε δύο κάθετες μεταξύ τους συνιστώσες, 
την κάθετη προς το δάπεδο δύναμη 



Ν1  και  
τη στατική τριβή 



 .  Αναλύουμε τη δύνα-
μη 



  σε δύο κάθετες μεταξύ τους συνιστώ-
σες 



x  και 



y
,  όπως φαίνεται στο επόμενο  

σχήμα.

φ

A

Γ

F

w

φ K

Σ

υ = 0

Ζ
Δ

s

Ν1Fδ

Tστ

Νx

Ν Νy

+

Επειδή η ράβδος ισορροπεί, ισχύει:


 

F  0   ή  ΣFx = 0 (1)  και  ΣFy = 0 (2).

Από τη σχέση (2) προκύπτει:

 
1

0   
y

w   ή   
1
   w  

ή  Ν1 = Νσυνφ + w  ή  N1 = Mgσυν2φ + Μg 

ή  
1

7

4
 Mg.  

Έστω s το διάστημα το οποίο μπορεί να διανύ-
σει το σώμα Σ ανερχόμενο προς το άκρο Α της 
ράβδου, χωρίς η ράβδος να ολισθήσει.

Όταν η ράβδος είναι έτοιμη να ολισθήσει, 

ισχύει: Τστ = Τορ  ή  Τστ = μsN1

ή  T g 
3

2

7

4
   ή  T g 

7

8
3 .

Από τη σχέση (1) προκύπτει: F T N
x

    0

ή  F T N      ή  F g 9

8
3 .  

Επειδή η ράβδος ισορροπεί, ισχύει:

Στ(Γ) = 0  ή      
F w

      
1

0  

ή        F s w( ) ( )   0 0 0  

ή     s FL Mg
L

 
2

ή  s

FL gL


 

1

2



  ή  s L= 5

8
.
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Η μέγιστη τιμή του μέτρου της αρχικής ταχύ-
τητας υ

0(max)
 με την οποία μπορούμε να εκτο-

ξεύσουμε το σώμα Σ από το άκρο Γ της ρά-
βδου, ώστε η ράβδος να μην ολισθήσει κατά 
τη διάρκεια της κίνησης του σώματος Σ πάνω 
σε αυτήν είναι αυτή για την οποία στο τέλος 
του διαστήματος s το σώμα Σ ακινητοποιείται 
στιγμιαία. Από το Θ.Μ.Κ.Ε. για την κίνηση 
του σώματος Σ από τη χρονική στιγμή t = 0 έως 
τη χρονική στιγμή στην οποία ακινητοποιείται 

στιγμιαία έχουμε:     W W
w N

1

ή  0
1

2
0

0

2

1
   m w s

x


(max)

ή  1

2
0

2
m mg s 

(max)
   ή   

0
2

(max)
 g s

ή  υ0
5
8(max)= gL.

35. Σωστή επιλογή είναι η γ.

Οι δυνάμεις που ασκούνται στο σώμα Σ είναι: 
το βάρος του w

1
 και η τάση 



T
2
 από το νήμα 

(2). Επειδή το σώμα Σ ισορροπεί, ισχύει: 

ΣFy = 0  ή  T2 = w1  ή  T
Mg

2

4
= .

Οι δυνάμεις που ασκούνται στο σύστημα των 
δύο ομοαξονικών κυλίνδρων είναι: η τάση 



��2  
από το νήμα (2), η τάση 



��1  από το νήμα (1), 
το βάρος του w

2
 και η δύναμη 



F��  από τον 
άξονα περιστροφής του.

Για τα μέτρα των τάσεων 


��2  και 


Τ2  ισχύει:

� �T T
2 2

  ή  � �T
Mg

2

4
.

Επειδή το σύστημα των δύο ομοαξονικών κυ-
λίνδρων ισορροπεί, ισχύει:

Στ(Ο) = 0  ή  � � � �
��� �� � � �� �

2 2 1

0
w F

  

ή  � � � � � �T R T r
2 1

0 0 0   ή  � � �T R T r
2 1

  

ή  � � �T T
1 2

2   ή  � �T
Mg

1

2
.

φ

Ν

Σ

Κ

Λ

Ζ

Οριζόντιο

επίπεδο

Λείος κατακόρυφος

τοίχος

(1)

(2)

R
r O

A Δ

Γ

y

y′
xx′ Ο

+

x

w1

w

Fx

Fy

Fαξ

F

T′1 T1

T′2

T2

h1

h2

w2

Οι δυνάμεις που ασκούνται στη ράβδο είναι: 
το βάρος της w  στο μέσον της Κ, η τάση 



Τ1  
από το νήμα (1), η δύναμη 



Ν  από τον τοίχο 
και η δύναμη 



F  από την άρθρωση, η οποία 
αναλύεται στις συνιστώσες 



F
x

 και 


F
y

 που 
φαίνονται στο παραπάνω σχήμα. Για τα μέτρα 
των τάσεων 



��1  και 


Τ1  ισχύει:

� �1 1� �   ή  � �
1

2
�

g
.

Επειδή η ράβδος ισορροπεί, ισχύει:
Στ(Α) = 0  ή  � � � �

F w N
� � � ��

1

0   

ή  0 0
1 1 2

� � � �wx T h Nh   

ή  � � � �w
L

T
L

NL
2 2

0
1

���� ��� ���   

ή  N
w T

� �
2 2

1   ή  N Mg Mg
� �

2 4
  ή  N Mg

=
4

.

Επειδή η ράβδος ισορροπεί, ισχύει ακόμη:

�
 

F � 0   ή  ΣFx = 0 (1) και ΣFy = 0 (2).
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Από τη σχέση (1), προκύπτει: 

F N T
x
� � �

1
0   ή  Fx = N + T1  

ή  F
Mg Mg

x
� �

4 2
  ή  F Mg

x
=

3

4
.

Από τη σχέση (2), προκύπτει:

F w
y
� � 0   ή  Fy = w  ή  Fy = Mg.

Το μέτρο της δύναμης που ασκείται στη ράβδο 
από την άρθρωση υπολογίζεται από τη σχέση:

F F F
x y

� �2 2   ή  F = 1,25Mg.

36. Σωστή επιλογή είναι η β.

φ

Κ

R

h

Δy
x

w

wx

wyA
φ

Για να υπερπηδήσει η σφαίρα το εμπόδιο, πρέ-
πει να ισχύει:

� �
w w

x y( ) ( )� �
�   ή  w y w x

x y
     

ή  w R h w x
x y
( )� �   

ή  w R h w R R h��� ����( ) ( )� � � �2 2

ή  ��� �
�

�
h R h

R h

( )2
  

ή    3   ή  ���
min

.� 3

37. Α. Σωστή επιλογή είναι η γ.

Στο παρακάτω σχήμα έχουν σχεδιαστεί οι δυ-
νάμεις που ασκούνται στο σύστημα δίσκος – 
τροχαλία – σώμα Σ.

Σ

(2)

(1)

R
1

K
1

K
2

R
2

R
Δ

O

Κ

φ +

Ν

Fαξ

T′1

T′2

T1T2

w2x

w2y w1

w2

w3

Tστ

+

Επειδή το σώμα Σ ισορροπεί, ισχύει:

ΣF = 0  ή  Τ1 = w1  ή  Τ1 = mg.

Είναι: � �� �1 1   ή  � ��
1

mg.

Επειδή η τροχαλία ισορροπεί, ισχύει: 

Στ(Ο) = 0  ή  � � � �
��� �� � � �� �

2 1 3

0
F w

  

ή  � � � � � �T R T R
2 2 1 1

0 0 0   ή  � � �T R T R
2 2 1 1

ή  � � �T T
2 1

2   ή  � �T mg
2

2 .

Είναι: T T
2 2
� �   ή  Τ2 = 2mg.

Επειδή ο δίσκος Δ ισορροπεί, ισχύει:

Στ(Κ) = 0  ή  � � � �
��w

2 2

0� � � �� � �   

ή  0 0 0
2

� � � �T R T R� ���   ή  Τστ = Τ2  

ή  Τστ = 2mg

Επειδή ο δίσκος Δ ισορροπεί, ισχύει ακόμη:

�
 

F � 0   ή  ΣFx = 0 (1) και ΣFy = 0 (2).
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Από τη σχέση (1), έχουμε:

w T T
x2 2

0� � ���   ή  Μgημφ = 4mg  

ή  Μ = 8m.

B. Σωστή επιλογή είναι η α.

Από τη σχέση (2), έχουμε:
N w

y
� �

2
0   ή  N = Μgσυνφ

ή  N mg= 4 3 .

Για το μέτρο της στατικής τριβής, ισχύει:

T T�� ���   ή  T N
s�� ��   ή  � ��

s

T

N
�   

ή  �
s

mg

mg
�

2

4 3
  ή  �

s
�

3

6
  

ή  μs(min)=
3
6

.
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38. α. 

Μ

Κ
A Γ

L

F
2

F
1

d

F
3

+

Είναι: � �� � � �� � � � �
F F F
1 2 3

  

ή        F
L

F
L

F d
1 2 3

2 2

ή  Στ M Nm   10 .

β. Για να ισορροπήσει η ράβδος, πρέπει να 
ασκηθεί κάθετα στη ράβδο η οριζόντια δύνα-
μη 



F
4
 που φαίνεται στο παρακάτω σχήμα.

Μ

Κ
A Γ

L

F
2

F
1

d x

F
3

F
4

+

Ισχύει: �
 

F � 0   ή  ΣF = 0  

ή  F F F F
1 4 2 3

0� � � �   ή  F4 = 50 N.

γ. Έστω x η απόσταση του σημείου εφαρμογής 
της δύναμης 



F
4
 από το μέσον Μ της ράβδου.

Ισχύει: � ��� � � 0   ή  � � � �
F F F F
1 2 3 4

0� � � �   

ή  � � �10 0
4

Nm
F
�   ή  �

F
Nm

4

10�   

ή  F x Nm
4

10=   ή  x = 0,2 m.

39. α. Οι δυνάμεις που ασκούνται στη ράβδο 
είναι: το βάρος της w  στο μέσον της Μ και οι 
κατακόρυφες δυνάμεις 



F
1
 και 



F
2
 από τα υπο-

στηρίγματα (1) και (2) αντίστοιχα, όπως φαί-
νεται στο παρακάτω σχήμα.

Α Γ
ΚM

(2)(1)

dF1

F2

w

+

β. Επειδή η ράβδος ισορροπεί, ισχύει:

Στ(Α) = 0  ή  � � �
F F w
1 2

0� � �   

0
2

0
2

� �� � � �F L d w
L   ή  F2 = 20 N.

γ. Επειδή η ράβδος ισορροπεί, ισχύει ακόμη:

�
 

F � 0   ή  ΣFy = 0  ή

F F w
1 2

0� � �   ή  F1 = 10 N.

40. α. Οι δυνάμεις που ασκούνται στη ράβδο 
είναι: το βάρος της w  στο μέσον της Κ, η 
δύναμη 



T  από το νήμα που έχει τη διεύθυν-
ση του νήματος και φορά προς τα πάνω και η 
δύναμη 



F  από την άρθρωση. Επειδή οι δυνά-
μεις w  και 



T  είναι κατακόρυφες, η δύναμη 


F  θα είναι και αυτή κατακόρυφη. Πράγματι, 
αν η δύναμη 



F  δεν ήταν κατακόρυφη, τότε θα 
μπορούσε να αναλυθεί σε δύο συνιστώσες: τη 
δύναμη 



F
x

 που έχει τη διεύθυνση της ράβδου 
και τη δύναμη 



F
y

 που είναι κάθετη στη ρά-
βδο. Επειδή η ράβδος ισορροπεί και δεν υπάρ-
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χει άλλη δύναμη στον άξονα ′x x  εκτός από τη 
συνιστώσα δύναμη 



F
x
,  ισχύει:

ΣFx = 0  ή  Fx = 0.
Επομένως, η δύναμη 



F  είναι κατακόρυφη.

Γ

Α

Ζ

F

+

T

K

w

β. Επειδή η ράβδος ισορροπεί, ισχύει:
Στ(Α) = 0  ή  τF + τw + τΤ = 0  

ή  0
2

0� � �w
L

TL   ή  T
Mg

=
2

ή  T = 15 N.

γ. Επειδή η ράβδος ισορροπεί, ισχύει: 
ΣFy = 0  ή  F T w� � � 0   

ή  F Mg T� �   ή  F = 15 N.

41. α. 

Δ

L

d

Α
Γ

Θ.Φ.Μ.

Δ� Fελ
FΑ

Κ

w

+

Επειδή η ράβδος ισορροπεί, ισχύει:
Στ(Α) = 0  ή  � � �

��F w F
A

� � � 0   

ή  0
2

0� � � �w
L

F L d�� ( )   

ή  F
wL

L d
  2( )

  ή  Fελ = 160 Ν.

β. Είναι: F k�� � �   ή  Δ  = 1,6 m.

γ. Επειδή η ράβδος ισορροπεί, ισχύει:

�
 

F � 0   ή  ΣFy = 0  ή  FA + Fελ = w

ή  FΑ = 80 Ν.

42. α. Στο παρακάτω σχήμα έχουν σχεδιαστεί 
οι δυνάμεις που ασκούνται στη ράβδο. 

φ

A Δ
Ζ

Γ

φ

φ

+

Κ

w

F

T

Επειδή το βάρος w  και η τάση 


T  του νήμα-
τος είναι κατακόρυφες, και η δύναμη 



F  από 
την άρθρωση θα είναι επίσης κατακόρυφη.

β. Επειδή η ράβδος ισορροπεί, ισχύει:

Στ(Α) = 0  ή  τF + τw + τΤ = 0  

0 0� � �w T( ) ( )�� ��   

ή  TL w
L

��� ����
2

  ή  T
w

=
2

 (1)  

ή  Τ = 50 Ν.

γ. Επειδή η ράβδος ισορροπεί ισχύει:

�
 

F � 0   ή  ΣFy = 0  ή  F w T   0   

ή  F w T� �  (2)  ή  F = 50 N.

δ. Από τη σχέση (1) προκύπτει ότι η τάση του 
νήματος είναι ανεξάρτητη από τη γωνία που 
σχηματίζει η ράβδος με την κατακόρυφη διεύ-
θυνση. Συνεπώς, είναι: Τ = 50 Ν.
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Από τη σχέση (2) προκύπτει το μέτρο της δύ-
ναμης που ασκείται στη ράβδο από την άρ-
θρωση είναι ξανά F = 50 N.

43. α.

F2

F4

F1

K

y

Ο x

+

F3x

F3y

Λ
φ

F3

Επειδή ο τροχός ισορροπεί, ισχύει:

�
 

F � 0   ή  ΣFx = 0 (1)  και  ΣFy = 0 (2).

Από τη σχέση (1) έχουμε:

F F F
x2 3 1

0� � �   ή  F F F
x3 1 2
� �   

ή  F F F
3 1 2
���� � �   ή  F3 = 20 N.

β. Από τη σχέση (2) έχουμε:

F F
y3 4

0� �   ή  F4 = F3ημφ  ή  F4 = 16 N.

γ. Επειδή ο τροχός ισορροπεί, ισχύει ακόμη:

Στ(Κ) = 0  ή  � � � �
F F F F
1 2 3 4

0� � � �   

FR F R F F R
y1 2 3 4

0� � � � � ���   

ή  F F F F R
3 41 2
��� ��� � � ��( )

ή  (ΚΛ) = 0,5 m.

44. α. Στη ράβδο ασκούνται οι εξής δυνάμεις: 
το βάρος της w στο μέσον της Κ, η τάση 



Τ  
από το νήμα και η δύναμη 



FΑ  από την άρθρω-
ση. Αναλύουμε την τάση του νήματος στις συ-
νιστώσες 



Τx  και 


Τy  που φαίνονται στο επό-
μενο σχήμα.

30°
Γ

+

Tx

FAy

FAx

FA

A
K

w

Ty
T

θ

Επειδή η ράβδος ισορροπεί, ισχύει:
Στ(Α) = 0  ή  � � �

F w
A

� � �� 0   

ή  0
2

0� � �w
L

T L
y

  ή  T
w

��� �
2

  

ή  T = 100 N.

β. Επειδή η ράβδος ισορροπεί, η συνισταμένη 
των δυνάμεων που ασκούνται σε αυτή είναι 
ίση με το μηδέν. Συνεπώς, είναι:

�
 

F � 0   ή  �F
x
� 0  (1)  και  �F

y
� 0  (2).

Από τη σχέση (1) έχουμε: F T
x x� � � 0

ή  FAx = Tσυνφ  ή  F N
x� � 50 3 .

Από τη σχέση (2) έχουμε: 
F T w

y y� � � � 0   ή  F w T
y� � � ���

ή  FAy = 50 N.

Το μέτρο της δύναμης 


F  που ασκείται στη ρά-
βδο από την άρθρωση δίνεται από τη σχέση:

F F F
x y

� �� �
2 2   ή  FA = 100 N.

γ. Έστω θ ή γωνία που σχηματίζει η δύναμη 


F  
με την οριζόντια διεύθυνση. Ισχύει: 

��� �
F

F

y

x

�

�

  ή  ��� � 3
3

  ή  θ = 30°.

45. α. Στο επόμενο σχήμα έχουν σχεδιαστεί οι 
δυνάμεις που ασκούνται στη ράβδο, οι οποίες  
είναι: το βάρος της w στο μέσον της Κ, η τάση  
του νήματος 



Τ  και η δύναμη από την άρθρω-
ση 



F.  Αναλύουμε τις δυνάμεις 


F  και 


Τ  σε 
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δύο κάθετες μεταξύ τους συνιστώσες, όπως 
φαίνεται στο ακόλουθο σχήμα.

φ

+

Tx
Fx

Ty
T

Γ
K

A

Fy F

w

Επειδή η ράβδος ισορροπεί, ισχύει: 
Στ(Α) = 0  ή    

F w
   0  

ή  0
2 2

0  w
L

T
L

y
  ή  Ty = w

ή  Tημφ = Μg  ή  T = 20 N.

β. Επειδή η ράβδος ισορροπεί, ισχύει:

 

F  0   ή  ΣFx = 0 (1)  και  ΣFy = 0 (2).
Από τη σχέση (1) έχουμε:
F T

x x
  0   ή  Fx = Tσυνφ  ή  F

x
 10 3 .  

Από τη σχέση (2) έχουμε:
F T w

y y
   0   ή  F Mg T

y
     ή  Fy = 0. 

Επομένως, το μέτρο της δύναμης που ασκείται 
στη ράβδο από την άρθρωση είναι:

F = Fx  ή  F N= 10 3 .

γ. Επειδή Fy = 0, η δύναμη που ασκείται στη 
ράβδο από την άρθρωση είναι οριζόντια με 
φορά προς τα δεξιά.

46. α. Οι δυνάμεις που ασκούνται στη ράβδο 
είναι: το βάρος της w  στο μέσον της Μ, η 
τάση του νήματος 



Τ  και η δύναμη 


F  από την 
άρθρωση. Αναλύουμε τη δυνάμη 



F  σε δύο κά-
θετες μεταξύ τους συνιστώσες, όπως φαίνεται 
στο επόμενο σχήμα.

φ
θ

A

Γ

K
Ζ

φ

+

Fx

T

Fy F
w

Μ

Δ

Επειδή η ράβδος ισορροπεί, ισχύει:
Στ(Α) = 0  ή  τF + τw + τΤ = 0 

ή  0 0  w Z( ) ( )    

ή   ( )  w
L

2

ή  w
T AK

L
 2 ( )


  ή  w = 10 N.

β. Επειδή η ράβδος ισορροπεί, ισχύει:


 

F  0   ή  ΣFx = 0 (1)  και  ΣFy = 0 (2).

Από τη σχέση (1) έχουμε:

F T
x
  0   ή  Fx = 5 Ν.

Από τη σχέση (2) έχουμε:

F w
y
  0   ή  Fy = 10 Ν.

Το μέτρο της δύναμης που ασκείται στη ράβδο 
από την άρθρωση υπολογίζεται από τη σχέση: 

F F F
x y

 2 2   ή  F N= 5 5 .

γ. Έστω θ η οξεία γωνία που σχηματίζει η δύ-
ναμη 



F  με την οριζόντια διεύθυνση. Έχουμε:

 
F

F

y

x

  ή  εφθ = 2.

47. α. Επειδή η ράβδος ισορροπεί, ισχύει: 

Στ(Α) = 0  ή  τF + τw + τΤ = 0  

ή  0� �w AZ TL( )   ή  TL w
L

�
2
���   

ή  T
w

=
4

  ή  T
Mg

=
4

  ή  Τ = 10 Ν.
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A Ζ

Γ

φ φ

φ

+

K

w

θ

Tx

Fy

Fx

F

Ty T

β. Επειδή η ράβδος ισορροπεί, ισχύει ακόμη: 

�
 

F � 0   ή  ΣFx = 0 (1) και ΣFy = 0 (2).

Από τη σχέση (1), έχουμε:

Τx = Fx  ή  Fx = Tσυνφ  ή  F N
x
= 5 3 .

Από τη σχέση (2), έχουμε:

Fy + Ty = w  ή  F w T
y
� � ���   

ή  F Mg T
y
� � ���   ή  Fy = 35 N.

Το μέτρο της δύναμης που ασκείται στη ράβδο 
από την άρθρωση είναι:

F F F
x y

� �2 2   ή  F N= 10 13 .

γ. Έστω θ η οξεία γωνία που σχηματίζει η δύ-
ναμη 



F  με την οριζόντια διεύθυνση. Είναι: 

��� �
F

F

y

x

  ή  εφθ = 7 3
3

.

48. α. Οι δυνάμεις που ασκούνται στη ράβδο 
είναι: το βάρος της w  στο μέσον της Μ, η 
δύναμη 



F  από τον κατακόρυφο τοίχο και η 
δύναμη 



Fδ  από το οριζόντιο δάπεδο. Επειδή 
ο κατακόρυφος τοίχος είναι λείος, η δύναμη 


F  είναι κάθετη στον τοίχο. Η δύναμη 


Fδ  που 
ασκείται στη ράβδο από το οριζόντιο δάπεδο 
αναλύεται σε δύο συνιστώσες: μια κατακόρυ-
φη συνιστώσα 



N  και μια οριζόντια συνιστώ-
σα 



T .

Α

Μ

ΓΖ θ
φ

Tσ

F

Ν

w

h

x

Fδ

Ν

y

y′
xx′ Ο

+

Επειδή η ράβδος ισορροπεί, το αλγεβρικό άθροι-
σμα των ροπών των δυνάμεων που ασκούνται  
σε αυτήν είναι ίσο με μηδέν ως προς οποιο-
δήποτε σημείο της. Δηλαδή, είναι: Στ = 0 (1).
Επιλέγοντας ως σημείο υπολογισμού των ρο-
πών το σημείο Γ, από τη σχέση (1) προκύπτει: 
Στ(Γ) = 0  ή    

w F F
   0   

ή     w F( ) ( )  0 0   

ή  wx Fh  0   ή  FL w
L

 
2

  

ή  F = 100 3 N.

β. Επειδή η ράβδος ισορροπεί ισχύει:

 

F  0   ή  ΣFx = 0 (2)  και  ΣFy = 0 (3).
Από τη σχέση (3), θεωρώντας ως θετική φορά 
τη φορά προς τα πάνω, έχουμε:
N w  0   ή  Ν = w  ή  N = 200 N.
Από τη σχέση (2), θεωρώντας ως θετική φορά 
τη φορά προς τα δεξιά, έχουμε:
F   0   ή  Tστ = F  ή    100 3 N.

Το μέτρο της δύναμης 


Fδ  που ασκείται στη ρά-
βδο από το οριζόντιο δάπεδο υπολογίζεται από 

τη σχέση: F   2 2   ή  Fδ = 100 7 N.

γ. Έστω θ η οξεία γωνία που σχηματίζει η δύ-
ναμη 



Fδ  με την οριζόντια διεύθυνση. Είναι:




 


  ή  εφθ = 2 3
3

.
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δ. Για το μέτρο της στατικής τριβής ισχύει: 
 

s
N  (4), όπου μs ο συντελεστής στατι-

κής τριβής μεταξύ της ράβδου και του οριζό-
ντιου δάπεδου. Από τη σχέση (4) προκύπτει: 

 
s
N   ή   

s

T

N
   ή  

s
 3

2
.

Συνεπώς, η ελάχιστη τιμή του συντελεστή στα-
τικής τριβής, ώστε η ράβδος να μην ολισθήσει 

στο οριζόντιο δάπεδο είναι: μs min  
3
2

.

49. α. Στο παρακάτω σχήμα έχουν σχεδιαστεί 
οι δυνάμεις που ασκούνται στη δοκό.

Α

Κ

Γ
Ζ φ

Tστ

F

Νw

h

x

+
Fδ

Δ

Επειδή η δοκός ισορροπεί, ισχύει:
Στ(Γ) = 0  ή  � � �

�F w F
� � � 0   

ή  � � � �F w( ) ( )�� �� 0 0   ή  � � �Fh wx 0   

ή  w
L

FL
2
���� ����  (1)  

ή  F w=
3

6
  ή  F N= 10 3 .

β. Επειδή η δοκός ισορροπεί, ισχύει:

�
 

F � 0   ή  ΣFx = 0 (2)  ή  ΣFy = 0 (3).
Από τη σχέση (2) έχουμε:
ΣFx = 0  ή  F = Tστ  ή  T N�� �10 3 .

Aπό τη σχέση (3) έχουμε:

ΣFy = 0  ή  Ν = w  ή  Ν = 60 Ν.

Για το μέτρο της στατικής τριβής ισχύει: 

T N
s�� ��   ή  � ��

s

T

N
�   ή  �

s
�

3

6
  

ή  μ s =
3
6 .

γ. Από τις σχέσεις (2) και (3) προκύπτει ξανά 
ότι: F = Τστ και Ν = w. Από τη σχέση (1) προ-

κύπτει: F
w
2




.  Για το μέτρο της στατι-

κής τριβής, ισχύει:

T N
s�� ��   ή  F w

s
� �   ή  w

w
s

2

����

���
��   

ή  ���

���� �
�

1

2
s

  ή  ��� � 3
3

  ή  ���
min

�
3

3

ή   θmin = 30°.

50. α. Οι δυνάμεις που ασκούνται στη ράβδο 
είναι: το βάρος της w  στο μέσον της Κ, η δύ-
ναμη 



N
1
 από το σκαλοπάτι που είναι κάθετη 

στη ράβδο και η δύναμη 


Fδ  από το δάπεδο, 
η οποία αναλύεται σε δύο συνιστώσες, στη 
στατική τριβή 



T��  και την κάθετη στο δάπεδο 
δύναμη 



N
2
.  

φ

Γ

ΑZ

K

Δ

d

L
φ

Ν1

Ν1x

Ν1y

y

y′
xx′ Ο

+

w
Ν2

Tστ

Fδ
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Επειδή η ράβδος ισορροπεί, ισχύουν οι σχέ-

σεις: �


� � 0  ή, αλγεβρικά, Στ = 0 (1)

και �
 

F � 0  ή, αλγεβρικά, ΣFx = 0 (2)
και ΣFy = 0 (3).
Από τη σχέση (1), έχουμε: 
Στ(Α) = 0  ή  � � �

��
1

0� � �
w F

  

ή  � � � � �N L d w AZ
1

0 0( ) ( )   

ή  N L d Mg
L

1

2
( )� � ����   ή  Ν1 = 10 Ν.

β. Από τη σχέση (2), έχουμε: N T
x1

0� ���

ή  T N�� ����
1

  ή  Τστ = 5 3 N.

γ. Από τη σχέση (3), έχουμε:
N N w

y1 2
0� � �   ή  N Mg N

2 1
� � ����

ή  Ν2 = 25 Ν.
Το μέτρο της δύναμης που ασκείται στη ράβδο 
από το δάπεδο υπολογίζεται από τη σχέση: 

F T N� ��� �2

2

2   ή  Fδ = 10 7 N.

δ. Για το μέτρο της στατικής τριβής ισχύει: 

T N
s�� ��

2
  ή  � ��

s

T

N
�

2

  ή  �
s
� 0 2 3, .  

Επομένως, είναι: μs(min) ,= 0 2 3 .

51. α. Επειδή η ράβδος ισορροπεί, ισχύει:
Στ(Α) = 0  ή  τF + τw + τΝ = 0  

ή  0� �wx Nh   ή  NL w
L

��� �����
2

  

ή  Ν = 10 Ν.

φ
Α

N

Z

Γ

h

w

x

Fy

Fx

F

Ν +

θ

β. Επειδή η ράβδος ισορροπεί, ισχύει:

�
 

F � 0   ή  ΣFx = 0 (1) και ΣFy = 0 (2).

Από τη σχέση (1), έχουμε: Fx – Ν = 0

ή  Fx = Ν  ή  Fx = 10 Ν.

Από τη σχέση (2), έχουμε: Fy – w = 0

ή  Fy = w  ή  Fy = 20 N.

Το μέτρο της δύναμης που ασκείται στη ράβδο 
από την άρθρωση είναι: 

F F F
x y

� �2 2   ή  F N= 10 5 .

γ. Έστω θ η οξεία γωνία που σχηματίζει η δύ-
ναμη 



F  με την οριζόντια διεύθυνση. Είναι: 

��� �
F

F

y

x

  ή  εφθ = 2.

52. α. Οι δυνάμεις που ασκούνται στον κύλιν-
δρο φαίνονται στο ακόλουθο σχήμα.

φ

R

Κ

F

+

y

x
Ο

Ν

wx

wy

w

Tστ

Επειδή ο κύλινδρος ισορροπεί, ισχύει:

�
 

F � 0   ή  ΣFx = 0 (1)  και  ΣFy = 0 (2)

και  Στ = 0 (3).
Aπό τη σχέση (2) έχουμε: 

N w
y

� � 0   ή  Ν = wy  ή  Ν = wσυνφ  

ή  N N= 100 3 .
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Aπό τη σχέση (1) έχουμε: F + Tστ – wx = 0
ή  F + Tστ = wx  ή  F + Tστ = wημφ (4).
Από τη σχέση (3), έχουμε:
Στ(Κ) = 0  ή     

w F
     0   

ή  0 0 0   T R FR   ή  Τστ = F (5).

Από τις σχέσεις (4) και (5) έχουμε:
2F = wημφ  ή  F = 50 N.

β. Από τη σχέση (5) προκύπτει: 
Τστ = F = 50 N.

γ. Επειδή ο κύλινδρος εξακολουθεί να ισορρο-
πεί, ισχύει:
Στ(Κ) = 0  ή  FR R� ����   ή  F � ����   και

ΣFx = 0  ή  F w� � ���� ���   ή  2 � ���� ���w  

ή  � ���� ���
w

2
.

Για το μέτρο της στατικής τριβής, ισχύει: 

� ���� �
s
N   ή  w

w
s

2
��� ������   ή  ��� �1 

ή  ���
max

�1   ή  φmax = 45°. 

53. α. Οι δυνάμεις που ασκούνται στο σύστη-
μα της ράβδου ΑΓ και των σωμάτων Σ1 και  
Σ2 έχουν σχεδιαστεί στο ακόλουθο σχήμα.

L

Α Κ

Σ
1

Σ
2

d

w

+

w
1

w
2

F

T′
1

T
1

T
2

T′
2

Γ

Επειδή το σώμα Σ1 ισορροπεί, ισχύει:

�
 

F � 0   ή  ΣFy = 0  ή  Τ1 = w1  ή  Τ1 = 20 Ν.

Επειδή το σώμα Σ2 ισορροπεί, ισχύει: 

�
 

F
y
� 0   ή  ΣFy = 0  ή  Τ2 = w2  ή  Τ2 = 5 Ν.

Είναι: � �T T
1 1

  ή   T N1 20  και � �T T
2 2

ή   T N2 5 .

β. Επειδή η ράβδος ισορροπεί, ισχύει: 

Στ(Κ) = 0  ή  � � � �� �� � � �� �
1 2

0
w F

  

ή     




     T d w

L
d T L d

1 2
2

0 0   

ή  w = 5 N.

γ. Επειδή η ράβδος ισορροπεί, ισχύει: 

�
 

F � 0   ή  ΣFy = 0  ή  F T T w� �� � �
1 2

ή  F = 30 N.

54. α. Οι δυνάμεις που ασκούνται στο σώμα  
Σ είναι: το βάρος του w

1
 και η δύναμη 



N  από 
τη ράβδο.

Α Γ

(2)(1)

Σ

Δ
w1

Ν

Επειδή το σώμα Σ ισορροπεί, ισχύει:

ΣFy = 0  ή  Ν = w1  ή  N = mg  ή  N = 60 N.

Η δύναμη που ασκείται στη ράβδο από το 
σώμα Σ είναι η 



�� .  Οι δυνάμεις 


��  και 


Ν  
έχουν σχέση δράσης – αντίδρασης, οπότε για 
τα μέτρα τους, ισχύει: � �� �   ή   N N60 .

β. Έστω F



1  και F



2  οι δυνάμεις που ασκού-
νται στη ράβδο από τα υποστηρίγματα που 
έχουν τοποθετηθεί στα σημεία της Α και Ζ 
αντίστοιχα.
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Α Γ

(2)(1)

Z

Μ

x

F2

F1

w

Ν′

d+

Σ

Δ

Επειδή η ράβδος ισορροπεί, ισχύει:

Στ(Α) = 0  ή  � � � �
F w F
1 2

0� � � ���   

ή  0
2

0
2

� � � � �� � �� x w
L

F L d   ή  F2 = 20 N.

Επειδή η ράβδος ισορροπεί, ισχύει ακόμη:

�
 

F � 0   ή  ΣFy = 0  ή  F F w N
1 2
� � � �   

ή  F1 = 60 N.

γ. x = 4,5 m (βλέπε βασική λυμένη άσκηση 5).

55. α. Οι δυνάμεις που ασκούνται στη δοκό 
ΚΛ είναι: το βάρος της w  στο μέσον της Μ 
και οι δυνάμεις 



F
1
 και 



F
2
 από τα υποστηρίγ-

ματα (1) και (2) αντίστοιχα. Σύμφωνα με την 
εκφώνηση, είναι F2 = 3F1 (1).

K Λ

(1) (2)

d1 d2

L

BA

Μ

w +

F1 F2

Επειδή η δοκός ισορροπεί, ισχύει:


 

F  0   ή  ΣFy = 0  ή  F1 + F2 – w = 0

ή  F1 + F2 = w  ή  4F1 = w  ή  F1 = 10 N.

Επομένως, από τη σχέση (1) για F1 = 10 N 

προκύπτει: F2 = 30 N.

β. Επειδή η δοκός ισορροπεί, ισχύει: 

Στ(Α) = 0  ή    
F w F
1 2

0    

ή  0
2

0
1 2 1 2

 




   w

L
d F L d d( )  

ή  d2 = 0,8 m.

γ. Έστω w
1
 το μέγιστο βάρος ενός πολύ μι-

κρού σώματος Σ το οποίο μπορούμε να τοπο-
θετήσουμε στο άκρο Λ της δοκού χωρίς αυτή 
να ανατρέπεται. Στην περίπτωση αυτήν, η δύ-
ναμη που ασκείται στη ράβδο από το υποστή-
ριγμα (1) γίνεται � �

 

F
1

0.

K Λ

(1) (2)

d1 d2

L

BA

w

w1

Σ

F′2
F′1

+

Επειδή το σύστημα ράβδος – σώμα Σ1 ισορρο-
πεί, ισχύει: Στεξ(Β) = 0  ή  � � � �� �� � � �

F w F w
1 2 1

0   

0
2

0 0
2 1 2

� ��
�
�

�
�
� � � �w

L
d w d   ή  w1 = 10 N.

56. α. Έστω 


T
1
 και 



T
2
 οι δυνάμεις που 

ασκούνται στη ράβδο από τα νήματα (1) και 
(2) αντίστοιχα.

Α
K

(1) (2)

Λ
Γ

L

d
1

d
2

+

w

T
1

T
2
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Επειδή η ράβδος ισορροπεί, ισχύει:
Στ(Κ) = 0  ή  � � �� �

1 2

0� � �
w

  

ή  0
2

0
1 2 1 2

� ��
�
�

�
�
� � � �� � �w

L
d T L d d

ή  Τ2 = 42 Ν.

β. Επειδή η ράβδος ισορροπεί, ισχύει:

�
 

F � 0   ή  ΣFy = 0  ή  Τ1 + Τ2 = w  

ή  Τ1 = 28 Ν.

γ. 
+

Α K

(1) (2)

Λ
Γ

L

d
1

d
2

w

w
1

T′
1

T′
2

Σ

Επειδή το σύστημα ράβδος – σώμα Σ ισορρο-
πεί, ισχύει: Στεξ(Α) = 0  ή  � � � �

w w
1 1 2

0� � � �� �� �   

ή  0
2

0
1 1 2 2

� � � � � �� � �w
L

d L d� �   

ή  � � � �� �
1 2

4

2

3 2

L L
w

L   ή  
�
�

�
�

� �
1 2

4

2

3 2

w  (1).

Επειδή ισχύει � � �� �
1 2

2 ,  από τη σχέση (1) 

προκύπτει: 7

6 2
2
� ��

w   ή  � �T N
2

30 .

Συνεπώς, είναι: � ��
1

60 N.

Επειδή το σύστημα ράβδος – σώμα Σ ισορρο-

πεί, ισχύει ακόμη: �
 

F � 0   ή  ΣFy = 0  
ή  � � � � �T T w w

1 2 1
  ή  w1 = 20 N

ή  mg = 20 N  ή  m = 2 kg.

57. α. Οι δυνάμεις που ασκούνται στο σύστη-
μα ράβδος – σώμα Σ είναι: το βάρος της ρά-
βδου w  στο μέσον της Μ, η δύναμη 



T  από το 

νήμα, το βάρος w
1
 του σώματος Σ και η δύ-

ναμη 


F  από την άρθρωση. Επειδή οι δυνάμεις 


Τ,  w  και w
1
 έχουν κατακόρυφη διεύθυνση, 

και η δύναμη 


F  από την άρθρωση θα έχει 
κατακόρυφη διεύθυνση.

K Z
Λ

ΣM

w

F

T

w
1

+

β. Επειδή το σύστημα ισορροπεί, ισχύει: 

Στ(Κ) = 0  ή  � � � �
F w w
� � � ��

1

0   

ή  0
2

0
1

� � � � � �w
L

T KZ w L   ή  (ΚΖ) = 3 m.

γ. Επειδή το σύστημα ισορροπεί, ισχύει ακό-

μη: �
 

F � 0   ή  ΣFy = 0  ή  F + T = w + w1

ή  F = 10 N.

δ. Αν αφαιρέσουμε το σώμα Σ από τη ράβδο, 
αυτή εξακολουθεί να ισορροπεί, οπότε ισχύει:
Στ(Κ) = 0  ή  � � �� �� � �

F w � 0   

ή  0
2

0� � � �w
L

T KZ( )   ή  � ��
80

3
N .

Επίσης, ισχύει: ΣFy = 0  ή  � � � �F w�

ή  � � � �F w T   ή   F N40
3

.

58. α. Οι εξωτερικές δυνάμεις που ασκούνται 
στη ράβδο είναι: το βάρος της w στο μέσον 
της Μ, η τάση 



T  του νήματος, το βάρος w
1
 

του σώματος Σ και η δύναμη 


F  από την άρ-
θρωση. Επειδή οι δυνάμεις w,  



T  και w
1
 εί-

ναι κατακόρυφες, η δύναμη 


F  από την άρθρω-
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ση θα είναι και αυτή κατακόρυφη. Έστω ότι η 
δύναμη 



F  έχει φορά προς τα πάνω.

K Z

Μ
Λ

Σ

Ν

d

w

F

T

w
1

+

Επειδή η ράβδος ισορροπεί, ισχύει:
Στ(Κ) = 0  ή  � � � �

F w w
� � � ��

1

0   

ή  0
2

0
1

� � � � �w
L

T L d w L( )   

ή  T

Mg
L

mgL

L d
�

�

�
2   ή  T = 40 N.

β. Επειδή η ράβδος ισορροπεί, ισχύει:

�
 

F � 0   ή  ΣFy = 0  ή  F T w w� � � �
1

0

ή  F Mg mg T� � �   ή  F = 10 N.

γ. Έστω 


F
1
 η δύναμη που ασκείται στο σώμα 

Σ από τη ράβδο. Η 


F
1
 είναι εσωτερική δύναμη 

του συστήματος ράβδος – σώμα Σ.

K Z
Λ

Σ

Ν

F
1

w
1

Στο σώμα Σ, εκτός από τη δύναμη 


F
1
,  ασκεί-

ται και το βάρος του w
1
.  Επειδή το σώμα Σ 

ισορροπεί, ισχύει: 

�
 

F � 0   ή  ΣFy = 0  ή  F1 = w1  ή  F1 = 10 N.

δ. Έστω 


��  η δύναμη που ασκείται στη ράβδο 
από το νήμα, αν αφαιρέσουμε το σώμα Σ.

K Z
Λ

Ν

d

w

F′

+

T′

Μ

Επειδή η ράβδος εξακολουθεί να ισορροπεί, 
ισχύει: Στ(Κ) = 0  ή  � � �� �� � �

F w � 0   

ή  0
2

0� � � � �w
L

T L d( )   ή  � �
�

T

Mg
L

L d

2

ή   T N
80

3
. Το ζητούμενο ποσοστό είναι: 

    T T

T
100%   ή  π = –33,33%.

59. α. Οι δυνάμεις που ασκούνται στο σύστη-
μα ράβδος – σώμα Σ είναι: το βάρος w  της 
ράβδου στο μέσον της Κ, το βάρος w

1
 του 

σώματος Σ, η δύναμη 


T  από το νήμα και η 
δύναμη 



F  από την άρθρωση.
Επειδή το σύστημα ράβδος – σώμα Σ ισορρο-
πεί, ισχύει:
Στ(Δ) = 0  ή  � � � �

F w w
� � � �

1

0�   

ή  � �� � � ��
�
�

�
�
� � � �F L d w

L
d Td

2
0 0   

ή  F = 20 N.

Δ
Γ

Σ

K
d

w

F
T

A

w1

+
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β. Επειδή η ράβδος ισορροπεί ισχύει:

�
 

F � 0   ή  ΣFy = 0  ή  F + T = w1 + w

ή  F + T = mg + Mg  ή  m = 3 kg.

γ. Οι δυνάμεις που ασκούνται στο σώμα Σ εί-
ναι: το βάρος του w

1
 και η δύναμη 



Fρ  από τη 
ράβδο. Επειδή το σώμα Σ ισορροπεί, ισχύει: 
ΣFy = 0  ή  Fρ = w1  ή  Fρ = mg  ή  Fρ = 30 Ν.

δ. Επειδή η ράβδος εξακολουθεί να ισορροπεί, 
ισχύει: Στ(Α) = 0  ή  � � �� �� � �

F w � 0   

ή  0
2

0� � � �w
L

T L   ή  � �T
Mg

2
  

ή  � �T N10  και �
 

F � 0   ή  ΣFy = 0  

ή  � � � �F T w   ή  � � � �F Mg T   ή  � �F N10 .

Συνεπώς, είναι: �F F F� � �   ή  ΔF = –10 N.

60. α. Οι δυνάμεις που ασκούνται στη ράβδο 
ΚΛ είναι: το βάρος της w  και οι δυνάμεις 



F
1
 

και 


F
2
 από τα υποστηρίγματα (1) και (2) αντί-

στοιχα. 

L

Α
Κ Λ

d1 d2

Β

(2)(1)

w

+F2F1

Επειδή η ράβδος ισορροπεί, ισχύει:

Στ(Α) = 0  ή    
F w F
1 2

0  

ή  0
2

0
1 2 1 2

 




   w

L
d F L d d( )

ή  F

Mg
L

d

L d d
2

1

1 2

2






 
  ή  F2 = 30 N.

Επειδή η ράβδος ισορροπεί, ισχύει ακόμη:


 

F  0   ή  ΣFy = 0  ή  F F w
1 2

0  

ή  F Mg F
1 2
    ή  F1 = 10 N.

β. Στο ακόλουθο σχήμα έχουν σχεδιαστεί οι 
εξωτερικές δυνάμεις που ασκούνται στο σύ-
στημα ράβδος – σώμα Σ, οι οποίες είναι: το 
βάρος w  της ράβδου, το βάρος w

1
 του σώμα-

τος Σ και οι δυνάμεις 


′F
1

 και 


′F
2

 από τα υπο-
στηρίγματα (1) και (2) αντίστοιχα.

w1

L

Α
Κ Λ

d1 d2

Β

(2)(1)

w

+F1

Σ

′ F2′

Σύμφωνα με την εκφώνηση, είναι:   F F
2 1

11  (1).
Επειδή η ράβδος ισορροπεί, ισχύει:
Στ(Λ) = 0  ή         

F w F w
1 2 1

0

ή         F L d w
L

F d
1 1 2 2

2
0 0( )  

ή      F L d F d Mg
L

1 1 2 2
2

( )  

ή, λόγω της σχέσης (1):

    F L d Fd Mg
L

1 1 1 2
11

2
( )

ή   
 

F
MgL

L d d
1

1 2
2 11( )

  ή   F N1 4 .

Από τη σχέση (1) για  F
1

4 ,  προκύπτει 
 F N2 44 .

γ. Επειδή η ράβδος ισορροπεί, ισχύει:


 

F  0   ή  ΣFy = 0  ή      F F w w
1 2 1

0  

ή  w F F w
1 1 2
      ή  mg F F Mg   

1 2

ή  m = 0,8 kg.
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δ. Έστω ότι μετακινούμε το υποστήριγμα (2) 
μέχρι το σημείο Ζ που απέχει απόσταση ′d

2
 

από το άκρο Λ τη ράβδου, ώστε η ράβδος μό-
λις που δεν ανατρέπεται ( ). 

 

F
1

0  Επειδή η ρά-
βδος εξακολουθεί να ισορροπεί, ισχύει:

Στ(Ζ) = 0  ή    




  w

L
d w d

2
0

2 1 2
 

ή  Mg
L

d mgd
2

2 2
 




    ή   d m

2

10

3
.  

Επειδή είναι  d d
2 2

,  το υποστήριγμα (2) έχει 
μετακινηθεί προς τα αριστερά.
Η ελάχιστη οριζόντια απόσταση όπου μπο-
ρούμε να μετακινήσουμε το υποστήριγμα (2), 
ώστε η ράβδος να μην ανατραπεί, είναι:

x d d
min

  
2 2

  ή  Δxmin=
1
3
m.

61. α.

Σ
1

Σ
2

R
1

Δ
1

Δ
2

R2

w2′

w1′

w2

w1

T1

T2

T2′
T1′

+F

K

Έστω 


Τ1  ή δύναμη που ασκείται στο σώμα Σ1 
από το νήμα (1). Επειδή το σώμα Σ1 ισορροπεί, 
ισχύει:

�
 

F � 0   ή  ΣFy = 0  ή  T1 = m1g  ή  Τ1 = 20 Ν.

β. Έστω 


T
2
 η δύναμη που ασκείται στο σώμα 

Σ2 από το νήμα (2). Επειδή τα νήματα είναι 
αβαρή, ισχύει: T T

1 1
� �  και T T

2 2
� �.  

Έστω  ′w
1
 το βάρος του δίσκου (1),  ′w

2
 το βά-

ρος του δίσκου (2) και 


F  η δύναμη που ασκεί-
ται στην τροχαλία από τον άξονα περιστροφής 
της. Επειδή η τροχαλία ισορροπεί, ισχύει: 
Στ(Κ) = 0  ή  � � � � �� � � �� � � � �

w w F
1 2 1 2

0� �   

ή  0 0 0 0
1 1 2 2

� � � � � � �� �R R   ή  � ��
22

40 N   

ή  Τ2 = 40 Ν.

γ. Επειδή το σώμα Σ2 ισορροπεί, ισχύει:

�
 

F � 0   ή  ΣFy = 0  ή  T2 = m2g  ή  m2 = 4 kg.

δ. Επειδή η τροχαλία ισορροπεί, ισχύει:

�
 

F � 0   ή  ΣFy = 0  ή  F w w� � � � � � � �� �
1 2 1 2

ή  F = 140 N.

62. α.

Σ

Κ
R2

R1

A
Γ

+

(2)
(1)

w3

w

T2′

T2

T1

T1′

Fαξ

FΑ

w1

Έστω 


T
1
 η δύναμη που ασκείται στο σώμα Σ 

από το νήμα που είναι τυλιγμένο γύρω από τον 
κύλινδρο (1). Επειδή το σώμα Σ ισορροπεί, 
ισχύει: 

�
 

F � 0   ή  ΣFy = 0  ή  T1 = w  ή  Τ1 = 10 Ν.

β. Έστω 


T
2
 η δύναμη που ασκείται στη ράβδο 

από το νήμα που είναι τυλιγμένο γύρω από  
τον κύλινδρο (2). Οι δυνάμεις που ασκούνται 
στην τροχαλία από τα νήματα που είναι τυλιγ-
μένα γύρω από τον κύλινδρο (1) και γύρω από 
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τον κύλινδρο (2) είναι 


′T
1

 και 


′T
2
 αντίστοιχα. 

Επειδή τα νήματα είναι αβαρή, ισχύει:
� �T T

1 1
 και � �T T

2 2
.

Επειδή η τροχαλία ισορροπεί ισχύει:
Στ(Κ) = 0  ή  � � � �

��F w
� � � �� �

3 1 2

0� �     

ή  0 0 0
2 2 1 1

� � � � � �T R T R   ή  � � � �T R T R
2 2 1 1

0  

ή  2
2 1
� � �T T   ή  2Τ2 = Τ1  ή  Τ2 = 5 Ν.

γ. Επειδή όλες οι δυνάμεις που ασκούνται  
στη ράβδο είναι κατακόρυφες, και η δύναμη 


F  που ασκείται στη ράβδο από την άρθρωση 
θα είναι επίσης κατακόρυφη. Επειδή η ράβδος 
ισορροπεί, ισχύει: Στ(Α) = 0  ή  � � �

F w
� � �

1 2

0�   

ή  0
2

0
1 2

� � �w
L

T L   ή  w1 = 2T2  ή  w1 = 10 N.

δ. Επειδή η ράβδος ισορροπεί, ισχύει:
�
 

F � 0   ή  ΣFy = 0  ή  FΑ + T2 = w1  
ή  FΑ = 5 N.

63. α. Οι δυνάμεις που ασκούνται στο σύ-
στημα είναι: το βάρος w

1
 της ράβδου ΟΑ, το 

βάρος w
2
 της ράβδου ΟΓ, το βάρος w  του 

σώματος Σ και η δύναμη 


F  από τον άξονα πε-
ριστροφής στο σημείο Ο. Επειδή όλες οι δυνά-
μεις είναι κατακόρυφες, και η δύναμη 



F  που 
ασκείται στο σύστημα των δύο ράβδων από 
τον άξονα περιστροφής του θα είναι κατα-
κόρυφη.

A ΓΣ

Ο

φ φ

w

w1

w2

y z

x

F

+

β. Επειδή το σύστημα ισορροπεί, ισχύει:

Στ(Ο) = 0  ή  � � � �
w w w F

1 2

0� � ��   

ή  � � � � �w y w z wx
1 2

0 0   

ή  w
L

wL w
L

2 1

2 2
�� �� ��� � �� �

ή  w2 = 100 N.

γ. Επειδή το σύστημα ισορροπεί, ισχύει:

�
 

F � 0   ή  ΣFy = 0  ή  F = w + w1 + w2  

ή  F = 170 N.

64. α. Στη ράβδο ασκούνται οι εξής δυνάμεις: 
το βάρος της w  στο μέσον της Μ, η τάση 



Τ  
από το νήμα και η δύναμη 



FΑ  από την άρ-
θρωση. Η δύναμη 



FΑ  σχεδιάζεται με τυχαίο 
τρόπο, καθώς η τάση 



Τ  του νήματος δεν εί-
ναι κατακόρυφη (γενικά, αν ένα στερεό σώμα 
ισορροπεί με τη δράση τριών μη παράλληλων 
δυνάμεων, οι φορείς των δυνάμεων αυτών 
διέρχονται από το ίδιο σημείο). Αναλύουμε 
τις δυνάμεις 



FΑ  και 


Τ  σε δύο κάθετες μεταξύ 
τους συνιστώσες, όπως φαίνεται στο ακόλου-
θο σχήμα.

φ
Γ

FΑy FΑ

FΑx

A
Μ

Ν

w

θ

Tx

Ty
T

+

Επειδή η ράβδος ισορροπεί, το αλγεβρι-
κό άθροισμα των ροπών των δυνάμεων που 
ασκούνται σε αυτήν είναι ίσο με το μηδέν ως 
προς οποιοδήποτε σημείο της. Δηλαδή, είναι:
Στ = 0 (1).
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Επιλέγοντας ως σημείο υπολογισμού των ρο-
πών το σημείο Α, από τη σχέση (1) προκύπτει: 

Στ(Α) = 0  ή    
F w

A

   0   

ή  0
2

0  w
L

L
y

   ή  
y

w


2
  

ή   
w

2
  ή  Τ = 200 Ν.

β. Επειδή η ράβδος ισορροπεί, η συνισταμένη 
των δυνάμεων που ασκούνται σε αυτήν είναι 
ίση με μηδέν. Δηλαδή, είναι: 

 

F  0

ή, αλγεβρικά, ΣFx = 0 (2)  και ΣFy = 0 (3).

Από τη σχέση (2), θεωρώντας ως θετική φορά 
τη φορά προς τα δεξιά, προκύπτει:
F

x x   0   ή  FAx = Tx  ή  FAx = Tσυνφ

ή  F
x  100 3 N.

Από τη σχέση (3), θεωρώντας ως θετική φορά 
τη φορά προς τα πάνω, προκύπτει:
F w

y y    0   ή  F w
y y     

ή  F w
y      ή  FAy = 100 N.

Το μέτρο της δύναμης 


F
A

 που ασκείται στη 
ράβδο από την άρθρωση δίνεται από τη σχέση:

F F F
A Ax Ay
 2 2   ή  FA = 200 N.

γ. Έστω θ η οξεία γωνία που σχηματίζει η δύ-
ναμη 



FΑ  με την οριζόντια διεύθυνση. Ισχύει:

 
F

F

y

x





  ή    3
3

  ή   θ = 30°.

δ. Έστω w1 το μέγιστο βάρος ενός σώματος Σ 
αμελητέων διαστάσεων που μπορούμε να το-
ποθετήσουμε στο άκρο Γ της ράβδου, ώστε να 
μην κοπεί το νήμα. Στην περίπτωση αυτή το 
μέτρο της τάσης του νήματος γίνεται:
� �T T��   ή   T N240 .

+

30°
Γ

Fy

Fx

F

A
K

w
w1

θ

T′x

T′yT′

Επειδή το σύστημα ράβδος – σώμα Σ ισορρο-
πεί, ισχύει:
Στεξ(Α) = 0  ή  � � � �

F w w
� � � ��

1

0�   

ή  0
2

0
1

� � � � �w
L

w L L
y

�   

ή  � � � � �w
L

w L L
2

0
1

� ���   ή  w1 = 20 N.

65. α. Έστω 


T  το μέτρο της τάσης του νή-
ματος.

w1w
Γ

ΣK

+

Fy

Fx

F
θ

30°Tx

TyT

A

Επειδή το σύστημα ράβδος – σώμα Σ ισορρο-
πεί, ισχύει: 

Στεξ(Α) = 0  ή  � � � �
F w w
� � � ��

1

0   

ή  0
2 2

0
1

� � � �T
L

w
L

w L
y

  

ή  T
L

Mg
L

mgL���
2 2
� �   ή  Τ = 400 Ν.

β. Έστω 


F  η δύναμη που ασκείται στη ράβδο 
από την άρθρωση. Ισχύει: 

�
 

F � 0   ή  ΣFx = 0 (1)  και  ΣFy = 0 (2).

Από τη σχέση (1) έχουμε:

Fx = Tx  ή  F T
x
� ����   ή  F N

x
= 200 3 .
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Από τη σχέση (2) έχουμε:
F T w w

y y
� � � �

1
0   ή  F w w T

y
� ��

1
���   

ή  F N
y
� �50 .

Το αρνητικό πρόσημο σημαίνει ότι η συνιστώ-
σα 



F
y

 έχει φορά προς τα κάτω.

Το μέτρο της δύναμης 


F  υπολογίζεται από τη 

σχέση: F F F
x y

� �2 2   ή  F = 350 N.

γ. Έστω θ η οξεία γωνία που σχηματίζει η δύ-
ναμη 



F  με τη διεύθυνση της ράβδου.

Fy

Fx

F

A θ

Είναι: ��� �
F

F

y

x

  ή  εφθ = 1
7

.

66. α. Έστω 


Τ  η δύναμη που ασκείται στη 
ράβδο από το νήμα και 



F  η δύναμη που ασκεί-
ται στη ράβδο από τον άξονα περιστροφής της.

L

Fy

Fx

F

K Γ

Z

A
Σ φ

θ

d

ww1

Tx

Ty
T+

Επειδή το σύστημα ράβδος – σώμα Σ ισορρο-
πεί, ισχύει: Στ(Κ) = 0  ή  � � � �

F w w
� � � �

1

0�   

ή  0
2

0
1

� � ��
�
�

�
�
� � �� � �w d w

L
d T L d

y
  

ή  ���� L d w
L

d mgd�� � � ��
�
�

�
�
� �

2

ή  Τ = 20 Ν.

β. Επειδή η ράβδος ισορροπεί, ισχύει:

�
 

F � 0   ή  ΣFx = 0 (1)  και  ΣFy = 0 (2).

Από τη σχέση (1) έχουμε:

Fx = Tx  ή  Fx = Tσυνφ  ή  F
x
�10 3 �.

Από τη σχέση (2) έχουμε:
Fy + Ty = w1 + w  ή  F mg w T

y
� � � ���

ή  Fy = 25 N.

Το μέτρο της δύναμης 


F  προκύπτει:

F F F
x y

 2 2   ή  F N= 925 .

γ. Έστω θ η οξεία γωνία που σχηματίζει η δύ-
ναμη 



F  με την οριζόντια διεύθυνση. Είναι:

 
F

F

y

x

  ή  εφθ = 2 5 3
3
, .

67. α. Οι δυνάμεις που ασκούνται στο σύστη-
μα ράβδος – σώματα είναι: το βάρος w της 
ράβδου στο μέσον της Κ, η τάση 



Τ  από το 
νήμα, τα βάρη w

1
 και w

2
 των σωμάτων Σ1 

και Σ2 αντίστοιχα και η δύναμη 


F  από τον 
άξονα περιστροφής της.

Επειδή η ράβδος ισορροπεί, ισχύει:
Στ(Ο) = 0  ή  � � � �

w F w
1 2

0� � � ��   ή  

w1d + 0 – w[(L/2) – d] + Tημφ[(L/2) – d] – w2(L – d) = 0

ή  Τ = 60 Ν.

O

K

A

Σ
1

Σ
2

Γ

φθ

d +
w

1

w
2

w

F
y

F
x

F

T
x

T
y T

β. Επειδή η ράβδος ισορροπεί, ισχύει: 

�
 

F � 0   ή  ΣFx = 0  (1)  και  ΣFy = 0  (2).
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Από τη σχέση (1), έχουμε: 

F T
x x
� � 0   ή  Fx = Tσυνφ  ή  F N

x
= 30 3 .

Από τη σχέση (2), έχουμε:
F T w w w

y y
� � � � �

1 2
0   

ή  F w w w T
y
� � � �

1 2
���   ή  Fy = 30 N.

Το μέτρο της δύναμης που ασκείται στη ράβδο 
από τον άξονα περιστροφής της είναι: 

F F F
x y

� �2 2   ή  F = 60 N.

γ. Έστω θ η γωνία που σχηματίζει η δύναμη 


F  
με την οριζόντια διεύθυνση. Είναι:

��� �
F

F

y

x

  ή  ��� � 3
3

  ή  θ = 30°.

68. α. Οι δυνάμεις που ασκούνται στο σώμα 
Σ είναι: το βάρος του w

2
 και η τάση 



Τ2  από 
το νήμα (2). Οι δυνάμεις που ασκούνται στη 
ράβδο είναι: το βάρος της w

1
,  η τάση 



Τ1  από 
το νήμα (1), η τάση 



2  από το νήμα (2) και 
η δύναμη 



F  από την άρθρωση. Αναλύουμε τη 
δύναμη 



F  και την τάση 


Τ1  σε δύο κάθετες 
μεταξύ τους συνιστώσες, όπως φαίνεται στο 
ακόλουθο σχήμα.

+
(1)

(2)

Fy

Fx

F

A

w1

θ

Σ

w2

T2

T2′

T1y

T1x

T1

φ
Γ

Επειδή το σώμα Σ ισορροπεί, ισχύει:

 

F  0   ή  ΣFy = 0  ή  
2 2

0 w

ή  T2 = mg  ή  T2 = 1 N.
Επειδή το νήμα (2) είναι αβαρές, ισχύει:
  2 2   ή   T N2 1 .

β. Επειδή η ράβδος ισορροπεί, ισχύει:
Στ(Α) = 0  ή     

F w
   

1 1 2

0    

ή  0
2

0
1 1 2

    w
L

L L
y

    

ή    
1 2

2
    g   ή  T1 = 5 N.

γ. Επειδή η ράβδος ισορροπεί, ισχύει:


 

F  0   ή  ΣFx = 0 (1)  και  ΣFy = 0 (2).

Από τη σχέση (1) προκύπτει:
F

x x
 

1
0   ή  Fx = T1συνφ

ή  F
x
 2 5 3,  .

Από τη σχέση (2) προκύπτει:
F w T

y y
    

1 1 2
0

ή  F Mg T
y
   

2 1
    ή  Fy = 1,5 N.

Το μέτρο της δύναμης 


F  υπολογίζεται από τη 

σχέση: F F F
x y

 2 2   ή  F N= 21 .

Έστω θ η οξεία γωνία που σχηματίζει η δύνα-
μη 



F  με την οριζόντια διεύθυνση. Είναι:

 
F

F

y

x

  ή  εφθ = 3 5/ .

δ. Έστω 


1  η τάση του νήματος που ασκείται 
στη ράβδο από το νήμα (1) και 



′F  η δύναμη 
που ασκείται στη ράβδο από την άρθρωση, 
όταν κόψουμε το νήμα (2). Επειδή η ράβδος 
εξακολουθεί να ισορροπεί, ισχύει:
Στ(Α) = 0  ή       

F w
1 1

0   

ή  0
2

0
1 1

   w
L

L
y

   

ή    
1

2


g   ή    
1

3 .
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Επομένως, η ζητούμενη μεταβολή είναι:
  1 1 1     ή  ΔΤ1 = –2 Ν.

69. α. Στο ακόλουθο σχήμα έχουν σχεδιαστεί 
οι εξωτερικές δυνάμεις που ασκούνται στο  
σύστημα ράβδος – σώμα Σ.

φ

φ

Γ

K
Ζ

Σ

A
Δ

N

+

w

w1

θ

Fy

Fx

F

T

Επειδή το σύστημα ισορροπεί, ισχύει:
Στεξ(Α) = 0  ή  � � � �

F w w
� � � ��

1

0   

ή  0 0
1

� � � �� �� ��( ) ( ) ( )w w AN   

ή  T
L

g
L

mgL
2 2
��� ���� ����� ��   

ή  Τ = 50 Ν.

β. Επειδή η ράβδος ισορροπεί, ισχύει:

�
 

F � 0   ή  ΣFx = 0 (1) και ΣFy = 0 (2).

Από τη σχέση (1) προκύπτει:
F

x
� �� 0   ή  Fx = T  ή  Fx = 50 N.

Από τη σχέση (2) προκύπτει:
F w w

y
� � �

1
0   ή  Fy = Mg + mg  

ή  Fy = 40 N.

Tο μέτρο της δύναμης 


F  υπολογίζεται από τη 

σχέση: F F F
x y

� �2 2   ή  F N= 10 41 .

γ. Έστω θ η οξεία γωνία που σχηματίζει η ρά-
βδος με την οριζόντια διεύθυνση. Ισχύει:

��� �
F

F

y

x

  ή  εφθ = 0,8.

70. α. Στο παρακάτω σχήμα έχουν σχεδιαστεί 
οι εξωτερικές δυνάμεις που ασκούνται στο σύ-
στημα ράβδος – σώμα Σ. Επειδή το σώμα Σ 

ισορροπεί, ισχύει: �
 

F � 0   ή  ΣFy = 0
ή  T1 = w1  ή  T1 = mg  ή  T1 = 10 N.

Είναι: � �� �1 1   ή  � �� �
1

10 .

φ

φ

φ

Γ

(1)

(2)

Σ

ΔΝ

Ζ

+

F

K

w

w1

T2

Fy

Fx

θ

Fy

T′1

T1

A

β. Επειδή η ράβδος ισορροπεί, ισχύει:
Στ(Α) = 0  ή  � � � �

F T w
� � � ��

2 1

0�   

ή  0 0
2 1

� � � � �T AZ w AN A( ) ( ) ( )� �   

ή  T
L

Mg
L

L
2 1

2 2
���� ��� ���� � ��   

ή  Τ2 = 50 Ν.

γ. Επειδή η ράβδος ισορροπεί, ισχύει: 

�
 

F � 0   ή  ΣFx = 0 (1) και ΣFy = 0 (2).
Από τη σχέση (1) προκύπτει:
F T

x
� �

2
0   ή  Fx = T2  ή  Fx = 50 N.

Από τη σχέση (2) προκύπτει: 
F w

y
� � � ��

1
0   ή  F Mg

y
� � ��

1
  

ή  Fy = 40 N.
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Το μέτρο της δύναμης που ασκείται στη ράβδο 
από την άρθρωση υπολογίζεται από τη σχέση:

F F F
x y

� �2 2   ή  F =10 41   ή  F = 64 N.

Έστω θ η οξεία γωνία που σχηματίζει η δύνα-
μη 


F  από την άρθρωση με την οριζόντια διεύ-

θυνση. Είναι: ��� �
F

F

y

x

  ή  εφθ = 0,8.

δ. Έστω 


��2  η τάση του νήματος που ασκείται 
στη ράβδο από το νήμα (2) και 



′F  η δύναμη 
που ασκείται στη ράβδο από την άρθρωση, αν 
κόψουμε το νήμα (1). Επειδή η ράβδος εξακο-
λουθεί να ισορροπεί, ισχύει: 

Στ = 0 (3) και �
 

F � 0   ή  ΣFx = 0  (4)

και  ΣFy = 0  (5).

Από τη σχέση (3), έχουμε:

Στ(Α) = 0  ή  � � �� �� � �
F w T

2

0   

ή  0 0
2

� � � �T AZ w AN( ) ( )   

ή  � �T
L

Mg
L

2

2 2
���� ���   ή  � �T

2
30 �.

Από τη σχέση (4), έχουμε:

� � � �F T
x 2

0   ή  � � �F T
x 2

  ή  � �F
x

30 �.

Από τη σχέση (5), έχουμε:

� � �F w
y

0   ή  � �F Mg
y

  ή  � �F
y

30 �.

Συνεπώς, είναι: 

� � �� � � �� �F F F
x y

2 2

  ή  � �F N30 2   

ή  � �F N42 .

Επομένως, η μεταβολή του μέτρου της δύνα-
μης που ασκείται στη ράβδο από την άρθρωση 
είναι: �F F F� � �   ή  ΔF = –22 N.

71. α. Στο παρακάτω σχήμα έχουν σχεδιαστεί 
οι δυνάμεις που ασκούνται στη ράβδο.

φ

Κ

Λ

Μ

Δ

Tστ

F

Ν
w

h

+

Fδ

Ζ

x

Επειδή η ράβδος ισορροπεί, ισχύει:

Στ(Λ) = 0  ή  � � �
�F w F

� � � 0   

ή  � � � �F w( ) ( )�� �� 0 0   

ή  � � �Fh wx 0   ή  FL w
L

 
2

  

ή  F = 10 N.

β. Επειδή η ράβδος ισορροπεί, ισχύει: 

�
 

F � 0   ή  ΣFx = 0 (1) και ΣFy = 0 (2).

Από τη σχέση (2) προκύπτει:

� � �w 0   ή  N = w  ή  Ν = 20 Ν.

γ. Από τη σχέση (1) προκύπτει: 

F T  0   ή  Tστ = F  ή  Τστ = 10 Ν.

δ. Είναι: Τστ = Τορ  ή  Τστ = μsN  ή   
s

T



ή  μs = 0,5.

ε. Επειδή το σώμα Σ ισορροπεί, ισχύει: 

�
 

F � 0   ή  ΣFy = 0  ή  Τ = w1  ή  Τ = 10 Ν.

Είναι: � �� �   ή  � �� �10 .  
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L

d

φ

Κ

Λ

Μ

Δ
T′στ

F′

Ν′w
w1

h

N
+

F′δ

Ζ

x
y

Σ

T′
T

Έστω d η μέγιστη απόσταση από το άκρο Λ 
της ράβδου όπου μπορούμε να αναρτήσουμε 
το σώμα Σ, ώστε η ράβδος να μην ολισθήσει. 
Στην περίπτωση αυτήν, για το μέτρο της στα-
τικής τριβής ����  που ασκείται στη ράβδο από 
το δάπεδο ισχύει: � �� ��� ��   ή  � � ���� �

s
N  (3).

Επειδή η ράβδος ισορροπεί, ισχύει:
�
 

F � 0   ή  ΣFx = 0  (4)  και  ΣFy = 0  (5). 
Από τη σχέση (5) έχουμε:
� � � � �N w T 0   ή  � � � �N T w   

ή  � �N N30 .  Συνεπώς, από τη σχέση (3) προ-
κύπτει: � �� ��� 15 .

Από τη σχέση (4) έχουμε:
ΣFx = 0  ή  � � �F ���   ή  � �F 15 �.
Επειδή η ράβδος ισορροπεί, ισχύει:
Στ(Λ) = 0  ή  � � � �

�� � �� � � �
F w F� 0   

ή � � � � � � �F w( ) ( ) ( )�� � �� �� 0 0   

ή � � � �� y wx F h   

ή � � � �T d w
L

F L���� ���� ���
2

  ή  d = 0,5 m.

72. α. Έστω 


Τ  η δύναμη που ασκείται στο 
σώμα Σ από το νήμα (1). 

Σ

Α

FF′

F′
x

F′
y (2)

(1)

Κ R
1

R2

Δ1

Δ2

+

w

w1 + w2

T′

T

φ

Επειδή το σώμα Σ ισορροπεί, ισχύει:
�
 

F � 0   ή  ΣFy = 0  ή  T = w  ή  Τ = 20 Ν.

β. Οι δυνάμεις που ασκούνται στη διπλή τρο-
χαλία είναι: η τάση ′



T  από το νήμα (1), τα 
βάρη w

1
 και w

2
 των δύο δίσκων, η δύναμη 



F  και η δύναμη 


′F  από τον άξονα περιστρο-
φής της. Επειδή το νήμα είναι αβαρές, ισχύει: 
� �T T   ή  � �T 20 �.  Επειδή η τροχαλία ισορ-

ροπεί, είναι: 
Στ(Κ) = 0  ή  � �� � �� �� �� � �

F Fw w
1 2

0�   

ή  0 0 0 0
1 2

� � � � � �T R FR   ή  F = 60 N.

γ. Επειδή η τροχαλία ισορροπεί, ισχύει ακόμη:

�
 

F � 0   ή  ΣFx = 0 (1)  και  ΣFy = 0 (2).
Από τη σχέση (1) προκύπτει:
� �F F
x

  ή  � �F
x

60 �.

Από τη σχέση (2) προκύπτει:

� � � � �F T w w
y 1 2

  ή  � � � � �F T M g M g
y 1 2

ή  � �F
y

80 �.

Tο μέτρο της δύναμης 


F  είναι:

� � � � �F F F
x y

2 2   ή  F = 100 N.
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δ. Έστω φ η οξεία γωνία που σχηματίζει η δύ-
ναμη 



′F  με την οριζόντια διεύθυνση. Ισχύει: 

��� �
�

�
F

F

y

x

  ή  εφφ = 4
3

.

73. α. Στο παρακάτω σχήμα έχουν σχεδιαστεί 
οι δυνάμεις που ασκούνται στα σώματα του 
συστήματος.

Σ

L

O

R

A

Γ

φ

φ

Fy

Fαξ

Fαξ(x)

Fαξ(y)

Fx

F

w1

w2

w

T1

T2y

T2x

T2

T′2x

T′1

T′2y

+

T′2

Επειδή το σώμα Σ ισορροπεί, ισχύει:

�
 

F � 0   ή  ΣFy = 0  ή  Τ1 = w  ή  T1 = mg

ή  T1 = 10 Ν. Είναι: � �� �1 1   ή  � �� �
1

10 .

Επειδή η τροχαλία ισορροπεί, ισχύει:

Στ(Ο) = 0  ή     
    

T F w T
2 2 1

0

ή       
2 1

0 0 0R T R   ή  � � ��
2 1

T

ή  � ��
2

10 N.  Είναι: � �2 2� �   ή  Τ2 = 10 Ν.

β. Επειδή η ράβδος ισορροπεί, ισχύει:

Στ(Α) = 0  ή    
F w
  

1 2

0   

ή  0
2

0
1 2

� � �w
L

L
y

�   ή  w1 = 2T2y  

ή  M1g = 2T2ημφ  ή  Μ1 = 1 kg.

γ. Επειδή η ράβδος ισορροπεί, ισχύει: 
 

F  0   

ή  ΣFx = 0 (1) και ΣFy = 0 (2).

Από τη σχέση (1), έχουμε:

Fx = Τ2x  ή  Fx = T2συνφ  ή  F N
x
= 5 3 .

Από τη σχέση (2), έχουμε:
Fy + T2y = w1  ή  F M g T

y
� �

1 2
���   

ή  Fy = 5 N.
Το μέτρο της δύναμης 



F  που ασκείται στη 
ράβδο από την άρθρωση υπολογίζεται από τη 

σχέση: F F F
x y

� �2 2   ή  F = 10 N.

δ. Επειδή η τροχαλία ισορροπεί, ισχύει: 
�
 

F � 0   ή  ΣFx = 0 (3) και ΣFy = 0 (4).
Από τη σχέση (3), έχουμε:
F

x x��( )
� � ��

2
0   ή  F

x x��( )
� ��

2
  

ή  F
x�� ����

( )
� ��

2
  ή  F N

x��( )
.� 5 3

Από τη σχέση (4), έχουμε: 
F w T

y y��( )
� � � � � ��

2 2 1
0   

ή  F w T
y y( )
    

2 2 1
  

ή  F g T
y�� ���

( )
� � � � �� �

2 2 1
  ή  Fαξ(y) = 35 N.

Το μέτρο της δύναμης που ασκείται στην τρο-
χαλία από τον άξονα περιστροφής της προκύ-

πτει: F F F
x y�� �� ��� �

( ) ( )

2 2   ή  Fαξ = 10 13 N.

74. α. Οι δυνάμεις που ασκούνται στο σώμα 
Σ είναι: το βάρος του w

3
 και η τάση 



Τ  του 
νήματος. Οι δυνάμεις που ασκούνται στην 
τροχαλία είναι: το βάρος της w

2
,  η δύναμη 

από το νήμα 


 ,  η δύναμη από τον άξονα  
περιστροφής της 



F  και η δύναμη από τη 
ράβδο 



Fρ.  Η δύναμη 


Fρ  αναλύεται σε δύο 
συνιστώσες: τη δύναμη 



Ν  που είναι κάθετη 
στη ράβδο ΑΓ και τη στατική τριβή 



  που 
είναι παράλληλη προς τη ράβδο ΑΓ. Η δύναμη 


F  αναλύεται, επίσης, σε δύο κάθετες μετα-
ξύ τους συνιστώσες, την 



F
x( )

 και την 


F
y( )

,  
όπως φαίνεται στο επόμενο σχήμα.
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Σ

Α
Γ

Δ

Κ

R
w

2

w
3

T

T′

T
στ

F
ρ

F
αξ

F
αξ(y)

F
αξ(x)

+
N

Επειδή το σώμα Σ ισορροπεί, ισχύει:

 

F  0   ή  ΣFy = 0  ή    w
3

0   ή  T = 20 N.
Επειδή το νήμα είναι αβαρές, ισχύει:
     ή    20 .

Επειδή η τροχαλία ισορροπεί, ισχύει:
Στ(Κ) = 0  ή      

         w F
2

0   

ή         R T R 0 0 0 0   

ή  T R R     ή  T     ή  Τστ = 20 Ν.

β. Οι δυνάμεις που ασκούνται στη ράβδο ΑΓ 
είναι: το βάρος της w

1
,  η δύναμη από την τρο-

χαλία 
  

F F F  ( )   και η δύναμη από την 

άρθρωση 


FΑ.  Η δύναμη 


F  αναλύεται στη 

συνιστώσα    
  

  ( )  και στη συνιστώσα 
  

       ( ),  όπως φαίνεται στο ακόλου-

θο σχήμα.

Σ

Α
Γ

L

3L
 
/
 
4

Δ

Κ R
w

1

F
τροχ

F
Ax

+F
Ay

F
A

Ν′

Τ′
στ

Επειδή η ράβδος ισορροπεί, ισχύει: 
Στ(Α) = 0  ή     

F w
A

    
1

0    

ή  0
2

3

4
0

1
   w

L
N

L   ή  3

4 2

1 N
M g

ή   N
M g2

3

1   ή   N N20 .

Ισχύει:       ή     20 .  

Επομένως, το μέτρο της δύναμης που ασκείται 
στη ράβδο από την τροχαλία είναι:

F    ( ) ( ) 2 2   ή  Fτροχ = 20 2 N.

γ. Επειδή η ράβδος ισορροπεί, ισχύει ακόμη:


 

F  0   ή  ΣFx = 0 (1)  και  ΣFy = 0 (2).
Από τη σχέση (1) προκύπτει:

   F
Ax

0   ή  F
Ax

    ή  FAx = 20 N.

Από τη σχέση (2) προκύπτει:

F N w
Ay
   

1
0   ή  F M g N

Ay
  

1

ή  FAy = 10 N.

Το μέτρο της δύναμης που ασκείται στη ράβδο 
από την άρθρωση υπολογίζεται από τη σχέση: 

F F F
Ax Ay  2 2   ή  F NA = 10 5 .

δ. Επειδή η τροχαλία ισορροπεί, ισχύει:

 

F  0   ή  ΣFx = 0 (3)  και  ΣFy = 0 (4).
Από τη σχέση (3) προκύπτει:
F

x ( )
  0   ή  Fαξ(x) = Tστ  ή  Fαξ(x) = 20 N.

Από τη σχέση (4) προκύπτει:
F w T N

y( )
    

2
0

ή  F Mg N
y( )
      ή  Fαξ(y) = 100 N.

Το μέτρο της δύναμης που ασκείται στην τρο-
χαλία από τον άξονά περιστροφής της είναι: 

F F F
x y   

( ) ( )

2 2   ή  Fαξ = 10 400. N.
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75. α. Οι δυνάμεις που ασκούνται στο σώμα 
Σ είναι το βάρος του w

1
 και η δύναμη 



Ν  από 
τη ράβδο.

d2d1

Μ
Κ Λ

Γ
Σ

(1) (2)

Α

T1 T2

Δ

w
w1

Ν′

Ν

+

x

Επειδή το σώμα Σ ισορροπεί, ισχύει: 

�
 

F � 0   ή  ΣFy = 0  ή  Ν = w1  ή  Ν = mg.
Οι δυνάμεις που ασκούνται στη ράβδο είναι: 
το βάρος της w  στο μέσον της M, οι τάσεις 


Τ1  και 


Τ2  από τα νήματα (1) και (2) αντίστοι-
χα και η δύναμη 



��  από το σώμα Σ.

Επειδή οι δυνάμεις 


Ν  και 


��  έχουν σχέση 
δράσης – αντίδρασης, ισχύει: � � �� � mg .

Επειδή η ράβδος ισορροπεί, ισχύει:

�
 

F � 0   ή  ΣFy = 0  ή  � � �
1 2
� � � �w

ή  5Τ2 + Τ2 = mg + Mg  ή  6T2 = mg + Mg (1).
Επειδή η ράβδος ισορροπεί, ισχύει ακόμη:
Στ(Κ) = 0  ή  � � � �� � � � �� � �

1 2

0
w

  

ή � � � ��
�
�

�
�
� � � � ��� �d w

L
d L d d

1 1 2 1 2
0

2
0( )    

ή mgd Mg
L

d T L d d
1 1 2 1 2

2
0 




   ( )  (2).

Επιλύοντας το σύστημα των εξισώσεων (1) 
και (2) προκύπτουν: T2 = 20 N και m = 6 kg.
Συνεπώς, είναι: T1 = 5T2  ή  T1 = 100 N.

β. Από την ισορροπία της ράβδου έχουμε: 

Στ(Κ) = 0  ή

� � �� � � ��
�
�

�
�
� � � � �� �x d Mg

L
d L d d

1 1 2 1 2

2
0( )  

ή  T2 = 20 + 20x (S.I.)  (3).
Από την ισορροπία της ράβδου, έχουμε:
ΣFy = 0  ή  T Mg

1 2
� � � �� �   

ή  T Mg
1 2
� � � �� �   ή  T mg Mg

1 2
� � �� ,

ή, λόγω της σχέσης (3): T1 = 100 – 20x (S.I.) (4).

γ. i.  Όπως φαίνεται από τις σχέσεις (3) και 
(4), όσο μετακινούμε το σώμα Σ προς τα δεξιά 
πάνω στη ράβδο, το μέτρο της τάσης Τ2 του 
νήματος (2) αυξάνεται, ενώ το μέτρο της τά-
σης Τ1 του νήματος (1) μειώνεται, ξεκινώντας 
από την τιμή 100 Ν (για x = 0). Επομένως, 
το νήμα (1) καθώς μετακινείται το σώμα Σ 
προς τα δεξιά πάνω στη ράβδο δεν κινδυνεύει  
να κοπεί. Για να μην κοπεί το νήμα (2), του 
οποίου το μέτρο της τάσης αυξάνεται, πρέπει 
να ισχύει: 
T T

2
� ��   ή  20 20 140� �x   ή  x m≤ 6 .

Καθώς μετακινείται το σώμα Σ προς τα δεξιά 
πάνω στη ράβδο, το μέτρο της τάσης Τ1 του 
νήματος (1) μειώνεται και όταν γίνει Τ1 = 0, το 
νήμα (1) λυγίζει και η ράβδος δεν ισορροπεί 
οριζόντια. Επομένως, πρέπει να ισχύει: 
T

1
0≥   ή  100 20 0� �x   ή  x m≤ 5 .

Επομένως, για να εξακολουθεί η ράβδος να 
ισορροπεί οριζόντια, πρέπει να ισχύει:
 x m≤ 5  και x m≤ 6 .

Συνεπώς, πρέπει x m≤ 5   ή  xmax = 5 m.
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ii. Πρέπει να ισχύει:

T
2
� ���   ή  20 20 110� �x

ή  x m≤ 4 5,  και T
1

0≥   ή  100 20 0� �x

ή  x m≤ 5 .

Επομένως, πρέπει: x m≤ 4 5,   ή  xmax = 4,5 m.

76. α. Οι δυνάμεις που ασκούνται στη ράβδο 
είναι: το βάρος της w  στο μέσον της Μ και οι 
δυνάμεις 



F
1
 και 



F
2
 από τα υποστηρίγματα (1) 

και (2) αντίστοιχα. 

L

Α
Κ Λ

d1 d2

ΒM

(2)(1)

F1

F2

w
+

Επειδή η ράβδος ισορροπεί, ισχύουν οι σχέ-

σεις: ΣFy = 0 (1)  και  Στ = 0 (2).

Ισχύει: F2 = 3F1 (3).

Από τη σχέση (1) έχουμε: 

ΣFy = 0  ή  F1 + F2 = w ή, λόγω της σχέσης (3):

4F1 = w  ή  F1 = 10 N.

Επομένως από τη σχέση (3) προκύπτει: 
F2 = 30 N.

β. Από τη σχέση (2) προκύπτει: 

Στ(Α) = 0  ή  � � �
F w F
1 2

0� � �   

ή  0
2

0
1 2 1 2

� ��
�
�

�
�
� � � �� � �w

L
d F L d d   

ή  d2 = 3 m.

γ. Οι δυνάμεις που ασκούνται στο σώμα Σ εί-
ναι: το βάρος του w

1
 και η δύναμη 



Ν  από τη 

ράβδο. Επειδή το σώμα Σ ισορροπεί, ισχύει: 
ΣFy = 0  ή  Ν = w1.
Οι δυνάμεις που ασκούνται στη ράβδο είναι: 
το βάρος της w,  οι δυνάμεις 



′F
1

 και 


′F
2

 από 
τα υποστηρίγματα (1) και (2) αντίστοιχα και  
η δύναμη 



��  από το σώμα Σ. Ισχύει:
� �� �   ή  � �� w

1
.

L

Α

Κ Λ

d1 d2

Β

(2)(1)

+

M

F′1

w
Ν′

Ν

w1

F′2

Επειδή η ράβδος ισορροπεί, ισχύει:

Στ(Α) = 0  ή  � � � �� � �� � � �� F w F
1 2

0   

ή  � � ��
�
�

�
�
� � � � �� � ��N d w

L
d F L d d

1 1 2 1 2
0

2
0

ή   F N2 25 .

δ. Έστω x1 η απόσταση του σώματος Σ από το 
άκρο Κ τη χρονική στιγμή t1 στην οποία η ρά-

βδος ανατρέπεται. Τη στιγμή t1 ισχύει: ���
 

F
1

0.

L
x1

Α
Κ Λ

d1 d2

Β

(2)(1)
+

M
F1′′

w
Ν′

F2′′
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Επειδή η ράβδος τη χρονική στιγμή t1 ισορρο-
πεί (οριακά), ισχύει:
Στ(Β) = 0  ή  � � � ��� �� �� � � �

F w F
1 2

0�   

ή  0
2

0 0
2 1 2

� ��
�
�

�
�
� � � � � �� ��� �� �w

L
d x L d�

ή  x1 = 7 m.

Επειδή το σώμα Σ εκτελεί ευθύγραμμη ομαλή 

κίνηση, ισχύει: t
x

1

1


  ή  t1 = 1 s.

ε. Έστω ότι τη χρονική στιγμή t, πριν ανατρα-
πεί η ράβδος, η απόσταση που έχει διανύσει 
το σώμα Σ, ξεκινώντας από το άκρο Κ της ρά-
βδου είναι ίση με x. 

L
x

Α
Κ Λ

d1 d2

Β

(2)(1)
+

M

w
Ν′

F1

F2

Επειδή η ράβδος ισορροπεί ισχύει:

Στ(Β) = 0  ή       
N w F

1

0   ή

� � �� � � ��
�
�

�
�
� � � � �� L x d w

L
d F L d d

2 2 1 1 2

2
0( )  

ή  F x
1

35 5� �  (S.I.) (4).

Επειδή το σώμα Σ εκτελεί ευθύγραμμη ομαλή 
κίνηση, ισχύει: x = υt  ή  x = 7t (S.I.) (5).

Η σχέση (4), λόγω της σχέσης (5), γράφεται: 

F t
1

35 35� �  (S.I.), με 0 1≤ ≤t s  (6).

Η γραφική παράσταση της σχέσης (6) απεικο-
νίζεται στο επόμενο διάγραμμα.

0 1

35

t(s)

F1(N)

77. α. Επειδή η ράβδος ισορροπεί, ισχύει: 
Στ(Α) = 0  ή  � � �

F w T
� � �

3

0   

ή  0
2

0
3

� � �w
L

T L   ή  Mg
L

T L
2

3
=   

ή  Τ3 = 10 Ν.

A
Γ

(1)

(2)

(3)

Σ1

Σ2

R1

R2
Ο

Κ1

Κ2

+

w2

w1

wολ

T3

T1

T2T′3

T′2

T′1

F1

F

w

β. Επειδή η ράβδος ισορροπεί, ισχύει ακόμη: 

�
 

F � 0   ή  ΣFy = 0  ή  F T w� � �
3

0   

ή  T Mg F
3
� �   ή  F = 10 N.

γ. Επειδή τα νήματα είναι αβαρή, ισχύει: 
� �

1 1
� �,  � �2 2� �  και � �

3 3
� � .

Επειδή το σώμα Σ1 ισορροπεί, ισχύει:
�
 

F � 0   ή  ΣFy = 0  ή  � �
1 3 1
� � �w   

ή  T1 = T3 + m1g  ή  Τ1 = 30 Ν.
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Επειδή η τροχαλία ισορροπεί, ισχύει:
Στ(Ο) = 0  ή  Στ(Ο) =    

   
T w F T

1 1 2

0

ή       
1 1 2 2

0 0 0R R   ή  Τ1R1 = T2R2

ή  T2 = 60 N.
Επειδή το σώμα Σ2 ισορροπεί, ισχύει:

�
 

F � 0   ή  ΣFy = 0  ή  Τ2 = m2g  ή  m2 = 6 kg.

δ. Επειδή η τροχαλία ισορροπεί, ισχύει:

�
 

F � 0   ή  ΣFy = 0  ή  F w
1 1 2
� � � � ��� � �   

ή  F g
1 1 2 1 2
� � � �( )� � � �   ή  F1 = 150 N.

78. α. Επειδή ο δίσκος ισορροπεί, ισχύει:

RΚ

O
A

Z

Μ1

Σ
Γ

d

L

+

w1

w
w2

T1 T2

T′1

T′2

F

Στ(Κ) = 0  ή    
w

1 2 1

0      

ή  0 0
2 1

� � �T R R�   ή  Τ2 = Τ1 (1)  και 

�
 

F � 0   ή  ΣFy = 0  ή  Τ1 + Τ2 = w1  

ή  T1 + T2 = M1g (2).

Από τις σχέσεις (1) και (2) προκύπτει: 
T1 = Τ2 = 40 Ν.
Επειδή το νήμα είναι αβαρές, ισχύει: 
� �� �2 2   ή   T N2 40 .

β. Επειδή η ράβδος ισορροπεί ισχύει:

ΣΤ(O) = 0  ή  � � � �� � � � ��
2 2

0
F w w

 

ή  � � � ��
�
�

�
�
� � �� � ��

2 2
0

2
0d w

L
d w L d   

ή  � � ��
�
�

�
�
� � �� � �� �

2 2

2
0d g

L
d mg L d   

ή  d = 1 m.
γ. Επειδή η ράβδος ισορροπεί, ισχύει: 

�
 

F � 0   ή  ΣFy = 0  ή  F w w� � � ��
2 2

  

ή  F M g mg� � � ��
2 2

  ή  F = 90 N.

79. α. Οι δυνάμεις που ασκούνται στον δίσκο 
είναι: το βάρος του w

2
 και οι τάσεις 



Τ1  και 


Τ2  από το νήμα. Αφού ο δίσκος ισορροπεί 
ακίνητος, ισχύει:
Στ = 0 (1) και ΣFy = 0 (2).
Από τη σχέση (1) έχουμε:
Στ(Κ) = 0  ή  � � �� �

1 2 2

0� � �
w

  

ή  � � � ��
1 1 2 2

0 0R T R   ή  T1 = T2.

Από τη σχέση (2) προκύπτει:

�
1 2 2

0� � �T w   ή  2Τ1 = Μ2g  

ή  Τ1 = 20 Ν.

Επομένως, είναι: Τ1 = Τ2 = 20 Ν.

Σ

R
1

d

L

Λ

R2Κ

ΓΑ

+

w3

w2

w1
T3

T1
T2

T′3 T′1

Fρ
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β. Οι δυνάμεις που ασκούνται στην τροχαλία 
είναι: το βάρος της w

1
,  οι δυνάμεις 



��1  και 


��3  
από το νήμα και η δύναμη 



Fρ  από τη ράβδο.

Για τα μέτρα των τάσεων 


��1  και 


��
3
,  ισχύει:

� �� �1 1   ή  � �� �
1

20  και � �� �
3 3

.

Επειδή η τροχαλία ισορροπεί, ισχύει:
Στ(Γ) = 0  ή  � � � �

�w F
1 3 1

0� � � �� �� �   

ή  0 0 0
3 1 1 1

� � � � � �� R T R   ή  � � �� �
3 1

  

ή  Τ3 = Τ1  ή  T3 = 20 N.
Οι δυνάμεις που ασκούνται στο σώμα Σ εί-
ναι: το βάρος του w

3
 και η δύναμη 



Τ3  από 
το νήμα. Επειδή το σώμα Σ ισορροπεί, ισχύει:
ΣFy = 0  ή  �

3 3
0� �w   ή  Τ3 = mg  

ή  m = 2 kg.

γ. Επειδή η τροχαλία ισορροπεί, ισχύει:

ΣFy = 0  ή  F w T T� � � � � � �
1 3 1

0   

ή  Fρ = Μ1g + T3 + T1  ή  Fρ = 60 Ν.

δ. Οι δυνάμεις που ασκούνται στη ράβδο είναι: 
η δύναμη 



�F�  από την τροχαλία ( ),
 

� � �F F� �  η 
δύναμη 



F
1
 από το υποστήριγμα, το βάρος w  

στο μέσον της Κ και η δύναμη 


FΑ  από τον 
άξονα περιστροφής της.

d
L

ΓΑ K
+

F1FA

w F′ρ

Επειδή η ράβδος ισορροπεί, ισχύει:
Στ(Α) = 0  ή  � � � �

�F w F F
A

� � � ��
1

0   

ή  0
2

0
1

� � � � �w
L

Fd F L�   

ή  Fd Mg
L

F L
1

2
� � ��   ή  F1 = 

340
3
N.

Επειδή η ράβδος ισορροπεί, ισχύει ακόμη:

ΣFy = 0  ή  F F w F
A
� � � � �

1
0�   

ή  F g F F
A
     1

  ή  FA = –112
3
N.

Δηλαδή, η δύναμη 


FA  έχει μέτρο 112
3
N και 

φορά προς τα κάτω.

80. α. Οι εξωτερικές δυνάμεις που ασκούνται 
στο σύστημα ράβδος – σώμα Σ είναι: το βάρος 
w  της ράβδου, το βάρος w

1
 του σώματος Σ, η 

τάση 


Τ  από το νήμα και η δύναμη 


F  από την 
άρθρωση. Αναλύουμε τη δύναμη 



F  και την 
τάση του νήματος 



Τ  σε δύο κάθετες μεταξύ 
τους συνιστώσες, όπως φαίνεται στο ακόλου-
θο σχήμα.

+

Fy

Fx

F

A
w1

w

θ

Ty

Tx

T

φ
Γ

Σ

Επειδή το σύστημα ράβδος – σώμα Σ ισορρο-
πεί, ισχύει:
Στ(Α) = 0  ή     

F w w
   

1

0

ή  0
2 2

1
0   w

L
w

L
T L

y

ή  T
mg Mg

  
2 2

  ή  T = 60 N.

β. Επειδή το σύστημα ράβδος – σώμα Σ ισορ-
ροπεί, ισχύει:

 

F  0   ή  ΣFx = 0 (1)  και  ΣFy = 0 (2).
Από τη σχέση (1) προκύπτει:
F T

x x
  0   ή  Fx = Tσυνφ 

ή  F
x
 30 3 .  
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Από τη σχέση (2) προκύπτει:
F T w w

y y
   

1
0   

ή  F mg Mg T
y
      ή  Fy = 30 N.

Το μέτρο της δύναμης 


F  που ασκείται στη ρά-
βδο από τον κατακόρυφο τοίχο υπολογίζεται 

από τη σχέση: F F F
x y

 2 2   ή  F = 60 N.

Έστω θ η οξεία γωνία που σχηματίζει η δύνα-
μη 



F  με την οριζόντια διεύθυνση. Είναι:

 
F

F

y

x

  ή    3
3

  ή  θ = 30°.

γ. Για να συμβεί αυτό, πρέπει η τάση του νήμα-
τος να γίνει ίση με το μηδέν. Επομένως, πρέπει 
να ασκήσουμε στο άκρο Γ της ράβδου μια κα-
τακόρυφη δύναμη 



F
1
 με φορά προς τα πάνω. 

Επειδή η ράβδος εξακολουθεί να ισορροπεί, 

ισχύει:  Στ(Α) = 0  ή  � � � �Mg
L

mg
L

FL
2 2

0
1

ή  F1 = 30 N.

δ. Έστω 


′F  η δύναμη που ασκείται στη ράβδο 
από την άρθρωση. Επειδή η ράβδος ισορροπεί, 
ισχύει:
ΣFy = 0  ή  � � � �F F Mg mg

1
  ή  � �F 30 �.

ε. Η δύναμη 


F
2
 έχει φορά προς τα κάτω. 

Ισχύει: Στ(Α) = 0  

ή  � � � � �Mg
L

mg
L

T L F L
2 2

0
2�����

ή  F2 = 30 N.

81. α. Οι δυνάμεις που ασκούνται στη ράβδο 
είναι: το βάρος της w  στο μέσον της Κ, η 
τάση του νήματος 



Τ1  από το νήμα (1), η τάση 
του νήματος 



Τ2  από το νήμα (2) και η δύναμη 


F  από τον τοίχο που αναλύεται στην κάθετη 
προς τον τοίχο δύναμη 



Ν  και στη στατική τρι-
βή 



���.  Οι δυνάμεις που ασκούνται στο σώμα 

Σ είναι: το βάρος του w
1
 και η τάση του νή-

ματος 


��2  από το νήμα (2). Επειδή το σώμα Σ 
ισορροπεί, ισχύει: 
ΣFy = 0  ή  � ��

2 2
w   ή  � ��

2
mg   

ή  � ��
2

20 N.  Είναι: � �2 2� �   ή  Τ2 = 20 Ν.

φ

φ

Σ

Γ

EΔ

(1)

(2)

A

Ζ

K

y

x

+

T1

Tστ

T2

F

Ν

w w1

T′2

β. Επειδή η ράβδος ισορροπεί, ισχύει: 

Στ(Α) = 0  ή  � � � �
F w
� � � �� �

1 2

0   

ή  0 0
1 2

� � � �w AZ T AE( ) ( ) ( )�� �   

ή  �
1 2

2
L Mg

L
T L��� ���� ����� �   

ή  T N1 30 3= .

γ. Επειδή η ράβδος ισορροπεί, ισχύει:

ΣFx = 0  ή  N = T1  ή  � �� 30 3  και

ΣFy = 0  ή  Tστ = w + Τ2  ή  Tστ = 40 Ν.

Συνεπώς, η δύναμη 


F που ασκείται στη ράβδο 
από τον τοίχο έχει μέτρο: 

F � �� ���
2 2   ή  F N= 10 43 .

δ. Ισχύει:  � ��� �� s   ή  � ��
s �

�
�

 ή  �
s
�

4 3

9
  ή  μs(min)=

4 3
9

.

82. α. Στο επόμενο σχήμα έχουν σχεδιαστεί 
οι δυνάμεις που ασκούνται στο σύστημα βα-
ρούλκο – σώμα Σ.
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Σ

R
φ

φ

Γ

Κ

F

�

+

F
y

F
αξ

F
αξ(y)

F
αξ(x)

F
x

w
1

w

T

T′

Επειδή το σώμα Σ ισορροπεί, ισχύει: 

�
 

F � 0   ή  ΣFy = 0  ή  Τ = w1  ή  Τ = mg

ή  Τ = 20 Ν. Είναι: � �T �   ή   T N20 .

β. Επειδή το βαρούλκο ισορροπεί, ισχύει: 

Στ(Κ) = 0  ή  � � � �
��F w F

� � � ��� 0   

ή  F T R � � � � �0 0 0   ή  F
T R

�
�


  

ή  F = 10 N.

γ. Επειδή το βαρούλκο ισορροπεί, ισχύει: 

�
 

F � 0   ή  ΣFx = 0 (1) και ΣFy = 0 (2).
Από τη σχέση (1) προκύπτει: 
F F

x x��( )
� � 0   ή  Fαξ(x) = Fσυνφ  

ή  Fαξ(x) = 8 N.

Από τη σχέση (2) προκύπτει: 
F F w T

y y��( )
� � � � � 0   

ή  F Mg T F
y�� ���

( )
� � � �   ή  Fαξ(y) = 94 N.

Το μέτρο τη δύναμης που ασκείται στο βα-
ρούλκο από τον άξονα περιστροφής του είναι:

F F F
y x y�� �� ��( ) ( ) ( )
� �2 2   ή  F

y��( )
�10 89

ή  F = 94 N.

83. α. Οι δυνάμεις που ασκούνται στο σώμα 
Σ είναι: το βάρος του w

3
 και η δύναμη 



Τ  από 
το νήμα. Οι δυνάμεις που ασκούνται στην τρο-
χαλία είναι: το βάρος της w

2
,  η δύναμη από 

το νήμα 


 ,  η δύναμη 


F  από τον άξονα πε-
ριστροφής της και η δύναμη 



Fρ  από τη ράβδο. 
Η δύναμη 



Fρ  αναλύεται σε δύο κάθετες μετα-
ξύ τους συνιστώσες, τη δύναμη 



Ν  που έχει τη 
διεύθυνση του άξονα ′y y  και τη στατική τρι-
βή 



  που έχει τη διεύθυνση του άξονα ′x x,  
όπως φαίνεται στο ακόλουθο σχήμα.

Α
Γ

ΔTστ

Fρ

+

y

y′
xx′ Ο

Fαξ

Σ

w3

w2

T

T′

Fαξ(x)Κ
R

N

r

Fαξ(y)

Αναλύουμε τη δύναμη 


F  που ασκείται στην 
τροχαλία από τον άξονά της σε δύο κάθετες 
μεταξύ τους συνιστώσες: την 



F
x( )

 που έχει 
τη διεύθυνση του άξονα ′x x  και την 



F
y( )

 που 
έχει τη διεύθυνση του άξονα ′y y.  
Επειδή το σώμα Σ ισορροπεί, ισχύει:

 

F  0   ή, αλγεβρικά, ΣFy = 0  ή    w
3

0   
ή  Τ = 9 Ν.
Επειδή το νήμα είναι αβαρές, ισχύει: 
     ή   T N9 .
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β. Επειδή η τροχαλία ισορροπεί, το αλγεβρι-
κό άθροισμα των ροπών των δυνάμεων που 
ασκούνται σε αυτήν ως προς οποιοδήποτε ση-
μείο της είναι ίσο με μηδέν, δηλαδή ισχύει:
Στ = 0 (1).
Εφαρμόζοντας τη σχέση (1) ως προς το κέντρο 
Κ της τροχαλίας έχουμε:
Στ(Κ) = 0  ή     

 


F w
   

2

0    

ή  0 0 0 0
2 1

     R R   

ή   
 

R
R

1

2

  ή  Tστ = 3 Ν.

γ. Οι δυνάμεις που ασκούνται στη ράβδο ΑΓ 
είναι: το βάρος της w

1
,  η αντίδραση της δύ-

ναμης 


Fρ ,  η 


F ,  η οποία αναλύεται στην κά-
θετη προς τη ράβδο δύναμη 

  

     ( )  
και στην παράλληλη προς τη ράβδο δύναμη 
  

       ( )  και η δύναμη από την άρ-
θρωση 



FΑ .  

Σ

Κ
R

r

Α
Γ

+

y

y′
xx′ Ο

Δ

L

L
 
/
 
2

FA(x)

FA(y)

FA

w1

Ν′

Τ′στ

Τ′ρ

Αναλύουμε τη δύναμη 


FΑ  σε δύο κάθετες με-
ταξύ τους συνιστώσες, την 



F
xΑ  και την 



F
yΑ  

που έχουν τη διεύθυνση του άξονα ′x x  και 
του άξονα ′y y  αντίστοιχα.

Επειδή η ράβδος ισορροπεί, ισχύουν οι σχέ-
σεις: 

 

F  0   ή, αλγεβρικά, ΣFx = 0 (2) και  
ΣFy = 0 (3) και 



  0  ή, αλγεβρικά, Στ = 0 (4).
Εφαρμόζουμε τη σχέση (4) ως προς το άκρο Α 
της ράβδου όπου ασκείται η άγνωστη δύναμη 


FΑ: Στ(Α) = 0  ή     
F w     

1

0   

ή  0
2

0 0
1

   w
L

N A( )   

ή   N
w L

1

2( )
  ή   N N20 .

δ. Από τη σχέση (2) προκύπτει:
   F

Ax
0   ή  F

Ax
    ή  FAx = Tστ

ή  FAx = 3 N.
Από τη σχέση (3) προκύπτει: 
F N w

Ay
   

1
0   ή  F w N

Ay
  

1

ή  FAy = 10 N.
Το μέτρο της δύναμης που ασκείται στη ράβδο 
από την άρθρωση υπολογίζεται από τη σχέση: 

F F F
x y   2 2   ή  F NA = 109 .

ε. Επειδή η τροχαλία ισορροπεί, η συνιστα-
μένη των δυνάμεων που ασκούνται σε αυτήν 
είναι ίση με μηδέν: 

 

F  0   ή, αλγεβρικά,
ΣFx = 0 (5)  και ΣFy = 0 (6).

Α
Γ

ΔTστ

Fρ

+

y

y′
xx′ Ο

Fαξ

Σ

w3

w2

T

T′

Fαξ(x)Κ
R

N

r

Fαξ(y)
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Από τη σχέση (5) προκύπτει: 
F

x ( )
  0   ή  Fαξ(x) = Tστ  ή  Fαξ(x) = 3 N.

Από τη σχέση (6) προκύπτει:
F N

y
w ( )

    
2

0   ή  F N
y

w ( )
   

2
  

ή  F N
y

w ( )
    

2
  ή  Fαξ(y) = 40 N.

Το μέτρο της δύναμης που ασκείται στην τρο-
χαλία από τον άξονα περιστροφής της υπολο-
γίζεται από τη σχέση: 

F F F
x y   

( ) ( )

2 2   ή  Fαξ = 1609 N.

84. α. Οι δυνάμεις που ασκούνται στο σώμα 
Σ είναι: το βάρος του wΣ  και η δύναμη 



T
1
 από 

το νήμα. Επειδή το σώμα Σ ισορροπεί, ισχύει:
ΣF = 0  ή  Τ1 = wΣ  ή  Τ1 = ΜΣg  ή  Τ1 = 20 Ν.

φ

F

Ο
RT

Σ

A

ΓΔ

Κ Β

Fαξ
FΣ

wΣ

wΤ

wΚ(y)

wΚ(x)

wΚ

Tστ

T′1

T′2

T1

T2

Ν

+

Οι δυνάμεις που ασκούνται στην τροχαλία  
είναι: το βάρος της wΤ ,  οι δύναμεις 



��1  και 


��2  από το νήμα και η δύναμη 


F��  από τον 
άξονα περιστροφής της. Επειδή η τροχαλία 
ισορροπεί, ισχύει:
Στ(Ο) = 0  ή  � � � �

��w F T T�
� � � �� �

1 2

0   

ή  0 0 0
2 1

� � � � � �T R R� ��   ή  � � �T
2 1

�   

ή  Τ2 = Τ1  ή  Τ2 = 20 Ν.

β. Οι δυνάμεις που ασκούνται στον κύλινδρο 
είναι: το βάρος του wΚ ,  η δύναμη από το 

νήμα 


Τ2  και η δύναμη 


FΣ  από τη σανίδα που 

αναλύεται στη δύναμη 


Ν  που είναι κάθετη 
στη σανίδα και στη στατική τριβή 



���.  Επειδή 

ο κύλινδρος ισορροπεί, ισχύει:
Στ(Κ) = 0  ή  � � � �

��w T� � �� � � �
2

0   

ή  0 0 0
2

� � � �T R R
K K�� �   ή  Tστ = Τ2  

ή  Τστ = 20 Ν.

γ. Επειδή ο κύλινδρος ισορροπεί, ισχύει ακόμη: 

�
 

F � 0   ή  ΣFx = 0 (1) και ΣFy = 0 (2).
Από τη σχέση (1) προκύπτει: 
T w F

K x�� � � � ��
2

0
( )

  ή

F T g
K

� � ��� ���� �
2

  ή  F = 30 N.

δ. Από τη σχέση (2) προκύπτει: 
� � �w

K y( )
0   ή  � � M g

K
����   

ή  � ��10 3 .

Για το μέτρο της στατικής τριβής, ισχύει:

� ��� ���   ή  ��� ��
s
N   ή  � ��

s

N
�
�  

ή  �
s
�

2 3

3
  ή  μs(min)=

2 3
3

.

ε. Οι δυνάμεις που ασκούνται στη σανίδα εί-
ναι: το βάρος της w  στο μέσον της Μ, οι δυ-
νάμεις 



��  και 


����  από τον κύλινδρο, η δύνα-
μη 



F��  από τον άξονα περιστροφής της και η 
δύναμη 



��  από το δάπεδο. Είναι: 
� �� �   ή  � �� ��� ��.

φ

φ
φ

A

Γ

Β

Μ

Fαξ(y)

Fαξ(x)

Fαξ

wx

wy

w

T′στ

+
Δ

Ν′
Νδ

Νδ(y)

Νδ(x)
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Επειδή η σανίδα ισορροπεί, ισχύει:

Στ(Γ) = 0  ή  � � � � �
� �� ��� � � � � ��w T N F

0   

ή  � �� �� ��
��

�
��

� �� ���( )
( ) ( )

y y
L w

L

2

                            � � � � �0 0 0� ��( )   

ή  � ������� L �� �( )

    � ��
��

�
��
� �� �� � ��g

L
����

2
0( ) ( )

ή  N

Mg
L

M g

L
� �

��
��

�
��
�

�
2

( ) ( )

( )

�� ��

��

�

ή  Νδ = 5,6 Ν.

85. α. Οι δυνάμεις που ασκούνται στο σώμα 
Σ1 είναι: το βάρος του w

1
 και η τάση 



Τ1  του 
νήματος. Επειδή το σώμα Σ1 ισορροπεί, ισχύει:

�
 

F � 0   ή  ΣFy = 0  ή  Τ1 = m1g  ή  Τ1 = 10 Ν.

Οι δυνάμεις που ασκούνται στο σώμα Σ2  
είναι: το βάρος του w

2
 και η τάση 



Τ2  του νή-
ματος. Επειδή το σώμα Σ2 ισορροπεί, ισχύει:

�
 

F � 0   ή  ΣFy = 0  ή  Τ2 = m2g  ή  Τ2 = 10 Ν.

Οι δυνάμεις που ασκούνται στη διπλή τροχα-
λία είναι: το συνολικό της βάρος w�� ,  οι τά-
σεις 



��1  και 


��2  από τα νήματα, η δύναμη 


F��  
από τον άξονα περιστροφής της, η δύναμη 



Fρ  
από τη ράβδο που αναλύεται στη δύναμη 



Ν  
που είναι κάθετη στη ράβδο και στη στατική 
τριβή 



���  που εφάπτεται στην τροχαλία στο 
σημείο επαφής Δ με τη ράβδο. Επειδή η τρο-
χαλία ισορροπεί, ισχύει: 
Στ(Κ) = 0  ή  � � � � �

�� �� ��F w T T
� � � � �� �

1 2

0�

ή  0 0 0
1 1 2 2 1

� � � � � � �� R T R T R��   ή, επειδή

 T T
1 1

 και  T T
2 2

,  T
R T R

R
�� �

��
1 1 2 2

1

ή  Tστ = 5 Ν.

Σ
1

Σ
2

Κ

Α

Δ

Γ

R
1

R2

(1)

L

d

+

φ

w
ολ

w
1

w
2

F
αξ

F
ρ

T′
1

T′
2

T
1

T
2

Ν

(2)
T

στ

β. Οι δυνάμεις που ασκούνται στη ράβδο εί-
ναι: το βάρος της w  στο μέσον της Κ, η δύ-
ναμη 



�F�  από την τροχαλία η οποία αναλύεται 
στην 



��  και στην 


����  και η δύναμη 


FΑ  από 
την άρθρωση. Είναι:
� �� ��� ��   ή  � �� ��� 5 .

Επειδή η ράβδος ισορροπεί, ισχύει:
Στ(Α) = 0  ή  � � � �

��w F
A

� � � �� �� � 0   

ή  w
L

N d
y

2
0 0 0� � � � �   

ή  Mg
L

N d����
2
� �   ή  � �N 10 �.
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Σ
1 Σ

2

Κ

Α

Δ

Κ

Γ

R
1

R2

(1)

L

d

+

φ

F
ρ

F
A

F
Ay

F
Ax

(2)

T′
στ Ν′

w
y w

x

w

′

Το μέτρο της δύναμης που ασκείται στη  
ράβδο από την τροχαλία είναι: 

� � �� � � �� �F� ��� �2 2   ή  ′ =F Nρ 5 5 .

γ. Είναι: � �� �   ή  Ν = 10 Ν. 

Ισχύει: T N
s�� ��   ή  � ��

s

T

N
�   ή  �

s
� 0 5,   

ή  μs(min) = 0,5.

δ. Επειδή η ράβδος ισορροπεί, ισχύει:

�
 

F � 0   ή  ΣFx = 0 (1) και ΣFy = 0 (2).

Από τη σχέση (1) έχουμε: 

F T w
Ax x
� � � ��� 0   ή  F g T

Ax
� � �� ��� ��

ή  FAx = 3,5 N.

Από τη σχέση (2) προκύπτει: 

F N w
Ay y
� � � � 0   ή  F g

Ay
� � �� �����

ή  F N
Ay
� �5 .

Το μέτρο της δύναμης που ασκείται στη  
ράβδο από την άρθρωση υπολογίζεται από τη 
σχέση: 

F F F
Ax Ay� � �2 2   ή  F N� � 37 25,

ή  FA = 6,1 N.
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2.5  Στροφορµή
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Α.	Θέµατα πολλαπλής επιλογής

  7. β   8. β   9. δ 10. β 11. γ

12. α 13. β 14. β 15. δ 16. β

17. γ 18. α 19. γ 20. δ

Β.	Θέµατα του τύπου Σωστό/Λάθος

21. α. Σ β. Σ γ. Σ δ. Λ ε. Σ

22. α. Σ β. Λ γ. Λ δ. Σ ε. Λ
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23. Σωστή επιλογή είναι η β.

Αρχικά, το μέτρο L της στροφορμής του υλι-
κού σημείου δίνεται από τη σχέση:

L = mυr  ή  L = m(ωr)r  ή  L = mr2ω (1).

Μετά τις μεταβολές, το μέτρο ′L  της στρο-
φορμής του υλικού σημείου γίνεται:

� �L m r( )2
2

2 �   ή  � �L mr2
2�  (2).

Από τις σχέσεις (1) και (2) προκύπτει:

L′ = 2L.

24. Σωστή επιλογή είναι η γ.

Η στροφορμή 


L
1
 του υλικού σημείου Σ1 εί-

ναι κατακόρυφη με φορά προς τα πάνω, ενώ η 
στροφορμή του υλικού σημείου Σ2 είναι κατα-
κόρυφη με φορά προς τα κάτω, όπως φαίνεται 
στο ακόλουθο σχήμα.

L1

L2 υ1

υ2

z

z

Ο
r1

r2

Σ1

Σ2

Το μέτρο της στοροφορμής 


L
1
 υπολογίζεται 

από τη σχέση:
L1 = m1υ1r1  ή  L1 = 2mυR.

Το μέτρο της στοροφορμής 


L
2
 υπολογίζεται 

από τη σχέση: L2 = m2υ2r2  ή  L2 = mυR.

Η στροφορμή 


L����  του συστήματος δίνεται 
από τη σχέση: 

  

L L L���� � �
1 2

 (1).

Θεωρώντας ως θετική φορά τη φορά προς τα 
πάνω, η σχέση (1) γράφεται: L L L���� � �

1 2
  

ή  Lσυστ = mυR.

25. Σωστή επιλογή είναι η β.

Η στροφορμή 


L
1
 του υλικού σημείου Σ1 ως 

προς τον άξονα ′z z  είναι κάθετη στο επίπεδο 
της σελίδας και έχει φορά από τη σελίδα προς 
τον αναγνώστη. Η στροφορμή 



L
2
 του υλικού 

σημείου Σ2 ως προς τον άξονα ′z z  είναι κάθε-
τη στο επίπεδο της σελίδας και έχει φορά από 
τον αναγνώστη προς τη σελίδα. Η στροφορμή 


L
3
 του υλικού σημείου Σ3 ως προς τον άξονα 

′z z  είναι ίση με μηδέν, διότι ο φορέας της τα-
χύτητας υ3  διέρχεται από τον άξονα ′z z.  

υ
1

υ
2

υ
3

A Β

ΓΔ

Σ1

Σ2

Σ3
L

1

L
2

Το μέτρο της στροφορμής 


L
1
 ως προς τον άξο-

να ′z z  υπολογίζεται από τη σχέση:
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L1 = m1υ1α  ή  L1 = mυα.

Το μέτρο της στοροφορμής 


L
2
 ως προς τον 

άξονα ′z z  υπολογίζεται από τη σχέση:
L2 = m2υ2α  ή  L2 = 4mυα.

Η στροφορμή 


L����  του συστήματος των  
τριών υλικών σημείων δίνεται από τη σχέση:
   

L L L L���� � � �
1 2 3

  ή  
  

L L L���� � �
1 2

 (1).

Αν θεωρήσουμε ως θετική φορά τη φορά από 
τη σελίδα προς τον αναγνώστη, η σχέση (1) 
γίνεται: L L L���� � �

1 2
  ή  |Lσυστ| = 3mυα.

26. Σωστή επιλογή είναι η α.

Όπως φαίνεται από το δοθέν διάγραμμα, η 
στροφορμή του υλικού σημείου ως προς τον 
άξονα ′z z  αυξάνεται με σταθερό ρυθμό. Συ-
νεπώς, είναι:

dL

dt

L

t
�
�
�

  ή  �
�
L

t

L L

t t
�

�
�

��� ���

��� ���

ή  �
�
L

t
kg m s�

�
�

�
35 5

6 0

2 2
/

ή  
L
t

kg m s5 2 2/Δ
Δ .

Έστω L1 η στροφορμή του υλικού σημείου τη 
χρονική στιγμή t1. Είναι:

dL

dt

L

t
�
�
�

  ή  �
�
L

t

L L

t
�

�
�

1

1
0

���

ή  L
L

t
t L

1 1
� �
�
� ���   ή  L kg m s

1

2
15� � / .

Το μέτρο της γραμμικής ταχύτητας του υλικού 
σημείου τη χρονική στιγμή t1 υπολογίζεται 
από τη σχέση:

L1 = mυ1r  ή  
1

1 L

mr
  ή  υ1 = 150 m/s.

27. Σωστή επιλογή είναι η β.

Οι ρυθμοί μεταβολής της στροφορμής των δύο 
υλικών σημείων ως προς τον άξονα ′z z  είναι 
σταθεροί. Το μέτρο του ρυθμού μεταβολής της 
στροφορμής του υλικού σημείου Σ1 υπολογί-
ζεται από τη σχέση: 

dL

dt

L

t

� ��

�
1 1�   ή  

�

�
�L

t

L

t

1 1

1

0

0
�

�
�

ή  
�

�
�L

t

L

t

1 1

1

�  (1), όπου L1 το μέτρο της στρο-

φορμής του υλικού σημείου Σ1 τη χρονική 
στιγμή t1. Το μέτρο του ρυθμού μεταβολής της 
στροφορμής του υλικού σημείου Σ2 υπολογί-
ζεται από τη σχέση:

dL

dt

L

t

� ��

�
2 2�   ή  

�

�
�L

t

L

t

2 2

1

0

0
�

�
�

   

ή  
�

�
�L

t

L

t

2 2

1

�  (2), όπου L2 το μέτρο της στρο-

φορμής του υλικού σημείου Σ2 τη χρονική 
στιγμή t1. Με διαίρεση κατά μέλη των σχέσεων 
(1) και (2) προκύπτει:

�

�
�

�

�

�

L

t

L

t

L

L

1

2

1

2

�  (3).

0

Σ
1

L
1

L
2

Σ
2

L

tt
1
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Όπως φαίνεται από το προηγούμενο διάγραμ-
μα τη χρονική στιγμή t1 ισχύει: L1 > L2, οπότε 

από τη σχέση (3) προκύπτει: 
�

�

�

�
� �L

t

L

t

1 2� .

28. Α. Σωστή επιλογή είναι η β.

Οι εξωτερικές δυνάμεις που ασκούνται στο 
σύστημα ράβδος – σφαιρίδια είναι τα βάρη 


w
1
 και w

2
 των δύο σφαιριδίων, η δύναμη 



F��  από τον άξονα περιστροφής και η δύναμη 


F.  Η μόνη εξωτερική δύναμη που δημιουργεί 
ροπή ως προς τον άξονα ′z z  είναι η δύναμη 


F.  Συνεπώς, είναι:

dL

dt

����
���� �   ή  dL

dt
F

���� ��

ή  dL

dt

F���� �


2
  ή  dL

dt
F��

1
2
��.συστ

B. Σωστή επιλογή είναι η β.

Η στροφορμή του συστήματος ράβδος – σφαι-
ρίδια ως προς τον άξονα ′z z  είναι κάθε χρονι-
κή στιγμή ίση με τη στροφορμή του συστήμα-
τος των σφαιριδίων ως προς τον ίδιο άξονα.

Επειδή η δύναμη 


F  είναι συνεχώς κάθετη στη 
ράβδο και έχει σταθερό μέτρο, η ροπή της ως 
προς τον άξονα ′z z  είναι σταθερή. Επομένως, 
ο ρυθμός μεταβολής της στροφορμής του συ-
στήματος ράβδος – σφαιρίδια ως προς τον 
άξονα ′z z  είναι σταθερός. Συνεπώς, είναι:

dL

dt
F

���� �
1

2
   ή  �

�
L

t
F

���� �
1

2


ή  L

t
F

���� �
�

�
0

0

1

2
1

   ή  L F t1
2 1�� .συστ

Γ. Σωστή επιλογή είναι η α.

Η στροφορμή του συστήματος των σφαιρι-
δίων Σ1 και Σ2 τη χρονική στιγμή t1 δίνεται 

από τη σχέση: 
  

L L L���� � �
1 2

,  όπου 


L
1
 και 



L
2
 οι στροφορμές των σφαιριδίων Σ1 και Σ2 

αντίστοιχα την ίδια χρονική στιγμή. Επει-
δή τα διανύσματα των στροφορμών 



L
1
 και 



L
2
 έχουν την ίδια φορά, το μέτρο της στρο-

φορμής του συστήματος τη χρονική στιγμή 
t1 δίνεται από τη σχέση: Lσυστ = L1 + L2  ή  

L m m���� � �� �
1 2

2 2

   (1), όπου υ1 και υ2 τα 

μέτρα των γραμμικών ταχυτήτων των σφαιρι-
δίων Σ1 και Σ2 αντίστοιχα τη χρονική στιγμή t1.
Έστω ω το μέτρο της γωνιακής ταχύτητας του 
συστήματος της χρονική στιγμή t1. Είναι:

 
1

2
   (2) και  2 2

   (3).

Από τις σχέσεις (2) και (3) προκύπτει:
υ1 = υ2 (4).

Από τη σχέση (1), λόγω της σχέσης (4), έχου-

με: L m  2
2

1

   ή  1

2
1 1

F t m  

ή  1 1
1
2

F
m

t .υ

29. Α. Σωστή επιλογή είναι η γ.

Έστω υΓ το μέτρο της ταχύτητας του σώματος 
Σ2 στο ανώτερο σημείο Γ της κυκλικής τροχιάς 
που διαγράφει μετά την κρούση.

Στο σημείο Γ ισχύει: ΣF = Fκ  ή    mg
m

2

2


  

ή    m
m g

2

2

2




 (1).
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Ο

φ

υ
1

  
2

υ

υ
Γ

Α

ΔΖ

Γ

Σ2

Σ2

x

h

υ

Τ

w
2

βαρU 0
βαρU 0

Για να εκτελέσει το σώμα Σ2 ανακύκλωση, 
πρέπει να ισχύει: � � 0  ή, λόγω της σχέσης 

(1): m
m g

2

2

2
0





    ή    g.

Επειδή το σώμα Σ2 μόλις που εκτελεί ανακύ-
κλωση, το μέτρο της ταχύτητάς του στη θέση 
Γ είναι:   g  (2).

Από την Α.Δ.Μ.Ε. για τις θέσεις Α και Γ της 
κυκλικής τροχιάς που διαγράφει το σώμα 
Σ2 μετά την κρούση, έχουμε: Εμηχ(Α) = Εμηχ(Γ) 
ή  ΚΑ + UA = KΓ + UΓ

ή  1

2
0

1

2
2

2 2

2

2

2

2
m m m g     

ή     
2

2
4 g  ή, λόγω της σχέσης (2): 

 
2

5g.  
Επειδή η κρούση είναι ελαστική, ισχύει:

 


 
2

1

1 2

1

2m

m m

ή  5
2

2 5
1

1 2

g
m

m m
g 



ή  m1 + m2 = 4m1  ή  m2 = 3m1  ή  m2 = 3m.

Έστω υ το μέτρο της ταχύτητας του σώματος 
Σ2 τη χρονική στιγμή t1 (θέση Δ).

Από το προηγούμενο σχήμα προκύπτει:

���� �
x


  ή  ���� � �


h

ή  h  ( )1    ή  h =


2
.

Από την Α.Δ.Μ.Ε. για την κίνηση του σώμα-
τος Σ2 μεταξύ των θέσεων Α και Δ της κυκλι-
κής τροχιάς που διαγράφει μετά την κρούση, 
έχουμε: Εμηχ(Α) = Εμηχ(Δ)  ή  ΚΑ + UA = KΔ + UΔ

ή  1

2
0

1

2
2 2

2

2

2

2
m m m gh    

ή    
2

2
2gh   ή    2 g.

Το μέτρο της στροφορμής του σώματος Σ2 τη 
χρονική στιγμή t1 ως προς τον άξονα ′x x  υπο-
λογίζεται από τη σχέση: L m

2


ή  L m g� � �3 2      ή  L m g�� 6 � �� � .

Β. Σωστή επιλογή είναι η β.

Οι δυνάμεις που ασκούνται στο σώμα Σ2 τη 
χρονική στιγμή t1 στην οποία διέρχεται από 
τη θέση Δ είναι: το βάρος του w

2
 και η τάση 



Τ  από το νήμα. Αναλύουμε το βάρος στις συ-
νιστώσες w

x2
 και w

y2
 που φαίνονται στο 

ακόλουθο σχήμα. Η συνιστώσα w
y2

 έχει την 
ακτινική διεύθυνση στη θέση Δ, ενώ η συνι-
στώσα w

x2
 είναι κάθετη στην ακτινική διεύ-

θυνση στην ίδια θέση.

A

Σ
2

Δ

w
2x w

2y

T

w
2

υ
2 


Ο

�φ

φ
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Η τάση του νήματος 


Τ  και η συνιστώσα w
y2

 
δεν δημιουργούν ροπή ως προς τον άξονα ′x x  
που διέρχεται από το σημείο Ο, γιατί οι φορείς 
τους διέρχονται από τον άξονα αυτόν. Η μο-
ναδική δύναμη που δημιουργεί ροπή ως προς 
τον άξονα ′x x  είναι η συνιστώσα w .

x2
 Επο-

μένως, είναι: dL

dt
� ��   ή  dL

dt
w

x

� �
2

ή  dL

dt
w

x
=

2
   ή  dL

dt
m g�

2
���

ή  
dL
dt

mg���
3 3

2
��.

30. Α. Σωστή επιλογή είναι η γ.

Έστω υΣ το μέτρο της ταχύτητας του συσσω-
ματώματος αμέσως μετά την κρούση.

υ
1

Ο

Σ1 Σ2
υ

Σ

w
Σ

υ

Ο

Α

Πριν από

την κρούση

Μετά

την κρούση

Γ

Σ
1
+ Σ2

T

βαρU 0
βαρU 0

� �

Από την Α.Δ.Ο. για το σύστημα των σωμάτων 
Σ1 και Σ2 κατά την κρούση έχουμε:
 

p p�� ���� �� ����( ) ( )
� ΄

ή  m1υ1 = (m1 + m2)υΣ  ή  υ1 = 4υΣ (1).

Έστω υ το μέτρο της ταχύτητας του συσσωμα-
τώματος τη χρονική στιγμή t1. Είναι:

L m m ( )
1 2

   ή  L m 4    ή    L

m4 

 

ή    g.

Από την Α.Δ.Μ.Ε. για την κίνηση του συσσω-
ματώματος μετά την κρούση, μεταξύ των θέ-
σεων Α και Γ που φαίνονται στο προηγούμενο 
σχήμα, έχουμε: Εμηχ(Α) = Εμηχ(Γ)

ή  ΚΑ + UA = KΓ + UΓ   ή

1

2
0

1

2
1 2

2

1 2

2

1 2
( ) ( ) ( )m m m m m m g       

 

ή     2
2g   ή    3g.

Επομένως, από τη σχέση (1) προκύπτει:

1 4 3g�� .υ

Β. Σωστή επιλογή είναι η γ.

Οι δυνάμεις που ασκούνται  στο συσσωμάτω-
μα τη χρονική στιγμή t1 είναι: το βάρος του 
wΣ  και η τάση 



Τ  του νήματος. Η τάση 


Τ  του 
νήματος δεν δημιουργεί ροπή ως προς τον άξο-

να ′x x.  Συνεπώς, είναι: dL

dt
� ��   ή  dL

dt
w

� �
�

ή  dL

dt
m m g� �( )

1 2
   ή  

dL
dt

mg�� 4 ��.

31. Σωστή επιλογή είναι η α.

Οι στροφορμές 


L
1
 και 



L
2
 των σημειακών σω-

μάτων Σ1 και Σ2 αντίστοιχα ως προς τον άξονα 
(1) έχουν την ίδια φορά. Επομένως, το μέτρο 
L της στροφορμής του συστήματος των ση­
μειακών σωμάτων ως προς τον άξονα (1) υπο-
λογίζεται από τη σχέση: L = L1 + L2 

ή  L m m� �
1 1 2 2

2 2
� �
 

ή  L m m� �
�
�

�
�
� � �

�
�

�
�
�1 0 2 0

2 2 2 2
� �
   

ή  L m m� �
1

4

1

4
1 0

2

2 0

2� � 

ή  L m�
3

4
0

2�   (1).
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Έστω ′L  το μέτρο της στροφορμής του συ-
στήματος των σημειακών σωμάτων ως προς 
τον άξονα (2).
Επειδή οι στροφορμές 



′L
1
 και 



′L
2
 των σημεια­

κών σωμάτων Σ1 και Σ2 αντίστοιχα ως προς 
τον άξονα (2) έχουν την ίδια φορά, το μέτρο 
′L  της στροφορμής του συστήματος των ση-

μειακών σωμάτων ως προς τον άξονα αυτόν 
υπολογίζεται από τη σχέση: � � � � �L L L

1 2

ή     L m m
1 1 2 2
 ( ) ( ) 

ή  L m m� �
�
�

�
�
� � �

�
�

�
�
�1 2

3 3

2

3

2

3
� �
   

ή  � � �L m m
1

2

2

2

9

4

9
� �
 

ή  � � �L m m
1

9

8

9

2 2� � 

ή  � �L m�2  (2).

Από τις σχέσεις (1) και (2) προκύπτει: L = L′

ή  m m� � 

2

0

23

4
�   ή  �� ����

3
4 0 ..

32. Α. Σωστή επιλογή είναι η α.

Έστω ω το μέτρο της γωνιακής ταχύτητας του 
συστήματος τη χρονική στιγμή t1. Το μέτρο 
της γραμμικής ταχύτητας του σώματος Σ1 τη  
χρονική στιγμή t1 δίνεται από τη σχέση:

υ1 = ωd  ή  � �
1

1

4
�   (1).

Το μέτρο της γραμμικής ταχύτητας του σώ-
ματος Σ2 τη χρονική στιγμή t1 δίνεται από τη 

σχέση:  
2
 ( ) d   ή   

2

3

4
   (2).

Από τις σχέσεις (1) και (2) προκύπτει:
υ2 = 3υ1 (3).

Οι στροφορμές 


L
1
 και 



L
2
 των σωμάτων Σ1 

και Σ2 αντίστοιχα ως προς τον άξονα ′x x  τη 
χρονική στιγμή t1 έχουν την ίδια φορά. Επομέ-
νως, το μέτρο της στροφορμής του συστήμα-
τος των σωμάτων Σ1 και Σ2 ως προς τον άξονα 
′x x  τη χρονική στιγμή t1 υπολογίζεται από τη 

σχέση: L = L1 + L2  ή  L m d m d  
1 1 2 2
  ( )

ή  L m m  
1 2

4
3

3

4

    ή, λόγω της σχέσης 

(3): L m7 ��υ1 .

B. Σωστή επιλογή είναι η α.

Οι δυνάμεις που ασκούνται στο σύστημα ρά-
βδος – σημειακά σώματα είναι: τα βάρη w

1
 

και w
2
 των σωμάτων Σ1 και Σ2 αντίστοιχα και 

η δύναμη 


F��  από τον άξονα περιστροφής. 

φ

φ
Γ

Σ2

w
2x

w
2y

w
2

Α Γ
Ο

Σ1 Σ2t = 0

ΑΣ1

φ w
1x

w
1

w
1y

Η δύναμη 


F��  από τον άξονα περιστροφής δεν 
δημιουργεί ροπή. Επομένως, τη χρονική στιγ-
μή t1 ισχύει:

dL

dt

�
�
�

�
�
� �
����

����   ή  dL

dt
w w

�
�
�

�
�
� � �
����

� �
1 2
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ή  dL

dt
w d w d

y y

�
�
�

�
�
� � � � �
����

1 2
( )

ή  dL

dt
m g m g

�
�
�

�
�
� � � �
����

���� ����
1 2

4

3

4

 

ή  dL

dt
mg mg

�
�
�

�
�
� � � �
����

1

8

9

8
 

ή  dL
dt

mg��.
συστ

33. Α. Σωστή επιλογή είναι η γ.

Ο ρυθμός μεταβολής της στροφορμής του συ-
στήματος της ράβδου ΑΓ και των σημειακών 
σωμάτων Σ1 και Σ2 ως προς τον άξονα (1) είναι 
σταθερός και ίσος με τη ροπή της δύναμης 



F.  

Συνεπώς, ισχύει: �
�

�
L

t

����
����

ή  L

t
F

1
0

2

�
�
   ή  L F t

1

1

2
=   (1).

Ο ρυθμός μεταβολής της στροφορμής του συ-
στήματος της ράβδου ΚΛ και των σημειακών 
σωμάτων Σ3 και Σ4 ως προς τον άξονα (2) είναι 
σταθερός και ίσος με τη ροπή της δύναμης 



F.  

Συνεπώς, ισχύει: �
�

�
L

t

����
����

ή  L

t
F

2
0

2

�
�
   ή  L F t

2

1

2
=   (2).

Από τις σχέσεις (1) και (2) προκύπτει:  L1 = L2.

Β. Σωστή επιλογή είναι η γ.

Τα διανύσματα των στροφορμών των σωμά-
των Σ1 και Σ2 ως προς τον άξονα (1) τη χρο-
νική στιγμή t έχουν την ίδια φορά. Επομένως, 
το μέτρο της στροφορμής 



L
1
 του συστήματος 

των σωμάτων Σ1 και Σ2 ως προς τον άξονα (1) 
τη χρονική στιγμή t δίνεται από τη σχέση:

L L L
1

1 2

� �� �   ή L m m
1 1 1 2 2

2 2
  

 

ή  L m m
1 1 1

2

2 1

2

2 2
� �

�
�

�
�
� � �

�
�

�
�
�� �

 

ή  L m m
1 1 2 1

21

4
� �( )�   (3).

Τα διανύσματα των στροφορμών των σωμά-
των Σ3 και Σ4 ως προς τον άξονα (2) τη χρο-
νική στιγμή t έχουν την ίδια φορά. Επομένως, 
το μέτρο της στροφορμής 



L
2
 του συστήματος 

των σωμάτων Σ3 και Σ4 ως προς τον άξονα (2) 
τη χρονική στιγμή t δίνεται από τη σχέση:

L L L
2

3 4

� �� �   ή  L m m
2 3 3 4 4

2 2
  

 

ή  L m m
2 3 2

2

4 2

2

2 2
� �

�
�

�
�
� � �

�
�

�
�
�� �

 

ή  L m m
2 3 4 2

21

4
� �( )�   (4).

Επειδή τη χρονική στιγμή t είναι L1 = L2, από 
τις σχέσεις (3) και (4), έχουμε:

1

4

1

4
1 2 1

2

3 4 2

2
( ) ( )m m m m� � �� � 

ή  4mω1 = mω2  ή  1
2

4
.ω ω
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34. α. Το διάνυσμα της στροφορμής 


L  του 
υλικού σημείου Σ έχει τη διεύθυνση του άξο-
να περιστροφής ′z z  και φορά που καθορίζεται 
με τον κανόνα του δεξιού χεριού. Επειδή το 
υλικό σημείο Σ περιστρέφεται σύμφωνα με τη 
φορά περιστροφής των δεικτών του ρολογιού, 
η φορά του διανύσματος 



L  της στροφορμής 
του είναι προς τα κάτω, όπως φαίνεται στο 
ακόλουθο σχήμα.

z

L
ω υ

R

Σ

O

z

β. Το μέτρο της στροφορμής 


L  του υλικού ση-
μείου υπολογίζεται από τη σχέση:
 L = mυR (1),  όπου υ το μέτρο της γραμμικής 
ταχύτητας του υλικού σημείου. Το μέτρο της 
γραμμικής ταχύτητας του υλικού σημείου δί-
νεται από τη σχέση: υ = ωR (2).

Από τη σχέση (1), λόγω της σχέσης (2), προ-
κύπτει: L = mωR2  ή  L = 2 kg · m2/s.

γ. Επειδή η στροφορμή του υλικού σημείου ως 
προς τον άξονα ′z z  παραμένει σταθερή, ισχύει: 

dL

dt
� ��   ή  Στ = 0.

δ. Έστω Δθ η γωνία που διαγράφει η επιβατική 
ακτίνα του υλικού σημείου σε χρονικό διάστη-
μα Δt = 4 s. Είναι: Δθ = ωΔt

ή  Δθ = 160 rad.

35. α. Όπως προκύπτει από το διάγραμμα, το 
μέτρο της στροφορμής του υλικού σημείου τη 
χρονική στιγμή t = 0 είναι L kg m s

0

2
1� � / .  

Έστω υ0 το μέτρο της γραμμικής ταχύτητας 
του υλικού σημείου τη χρονική στιγμή t = 0. 

Είναι: L0 = mυ0R  ή  �
0

0�
L

mR
  ή  υ0 = 10 m/s.

Το μέτρο της γωνιακής ταχύτητας του υλικού 
σημείου τη χρονική στιγμή t = 0 είναι:

υ0 = ω0R  ή  � �
0

0�
R

  ή  ω0 = 20 rad/s.

β. Έστω υ και ω τα μέτρα της γραμμικής και 
της γωνιακής ταχύτητας αντίστοιχα του υλι-
κού σημείου τη χρονική στιγμή t1.

Είναι υ = ωR (1).

Όπως προκύπτει από το διάγραμμα, το μέτρο 
της στροφορμής του υλικού σημείου τη χρονι-
κή στιγμή t1 είναι L kg m s

1

2
2� � / .  Είναι:

 L1 = mυR  ή  L1 = mωR2  ή  � � L

mR

1

2

ή  ω = 40 rad/s.

γ. Η αλγεβρική τιμή της ροπής τ της δύναμης 
που ασκείται στο υλικό σημείο ως προς τον 
άξονα ′z z  είναι ίση με την αλγεβρική τιμή του 
ρυθμού μεταβολής της στροφορμής του ως 

προς τον ίδιο άξονα. Δηλαδή, είναι: � � dL

dt
 (2).
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Επειδή η ροπή τ της δύναμης που ασκείται  

στο υλικό σημείο ως προς τον άξονα ′z z  είναι 
σταθερή, ισχύει: 

� �
�
�
L

t
  ή  � � �

�
L L

t

1 0

1
0

  ή  FR
L L

t
�

�
1 0

1

ή  F
L L

Rt
�

�
1 0

1

  ή  F = 4 N.

δ. Επειδή το μέτρο της στροφορμής του υλι-
κού σημείου αυξάνεται με σταθερό ρυθμό, το 
μέτρο της γωνιακής του ταχύτητας θα αυξάνε-
ται και αυτό με σταθερό ρυθμό.

Έστω αγων το μέτρο της γωνιακής επιτάχυνσης 
του υλικού σημείου. Είναι:

�
�

��� �
�
�t

  ή  � � �
��� �

�
�

0

1
0t

ή  αγων = 40 rad/s2.

Η γωνία στροφής Δθ του υλικού σημείου από 
τη χρονική στιγμή t = 0 έως τη χρονική στιγμή 
t1 υπολογίζεται από τη σχέση:

� � �� � ����� �
0

21

2
t t   ή  Δθ = 15 rad.

To πλήθος Ν των περιστροφών που εκτελεί το 
υλικό σημείο από τη χρονική στιγμή t = 0 έως 
τη χρονική στιγμή t1 είναι: 

�
�

�
�

�2
  ή  Ν = (7,5/π) περιστροφές.

36. α. Είναι: L0 = mυ0R  ή  L = mω0R
2

ή  ω0 = 40 rad/s.

β. Τη χρονική στιγμή t1 ισχύει: L1 = mυ1R

ή  L1 = mω1R
2  ή  ω1 = 20 rad/s.

γ. Είναι: dL

dt
� ��   ή  �

�
L

t
� �   ή  � � �

�
L L

t

1 0

1
0

  

ή  � � �2 5, Nm   ή  | | , .2 5 Nmτ

δ. Επειδή το μέτρο της στροφορμής του υλι-
κού σημείου μειώνεται με σταθερό ρυθμό, το 
μέτρο της γωνιακής ταχύτητάς του θα μειώνε-
ται και αυτό με σταθερό ρυθμό.
Έστω αγων η αλγεβρική τιμή της γωνιακής 
επιτάχυνσης του υλικού σημείου. Είναι: 

�
�

��� �
�
�t

  ή  �
� �

��� �
�
�

1 0

1 0t
  ή  αγων = –5 rad/s2.

Η χρονική στιγμή t2 στην οποία ακινητοποι-

είται το υλικό σημείο είναι:   1 0 2
  t

ή  0 = ω0 – |αγων| t2  ή  t
2

0 



  ή  t2 = 8 s.

ε. Είναι: �� � ����� �� � � �� �0 2

2

2

2

0
1

2
0t t

ή  Δθ = 160 rad. Επομένως, είναι: � �
�

�

�2
ή  Ν = (80/π) περιστροφές.

37. α. Το σημειακό σώμα Σ περιστρέφεται 
σύμφωνα με τη φορά περιστροφής των δεικτών 
του ρολογιού (όπως ο δίσκος) διαγράφοντας 
κυκλική τροχιά ακτίνας r γύρω από το κέντρο 
του δίσκου. Η στροφορμή 



L
1
 του σημειακού 

σώματος Σ τη χρονική στιγμή t1 έχει τη διεύ-
θυνση του άξονα ′z z  και φορά προς τα κάτω 
(σύμφωνα με τον κανόνα του δεξιού χεριού).

L1

zʹ

z

R
Κ Σr

Το μέτρο της στροφορμής 


L
1
 του σημειακού 

σώματος υπολογίζεται από τη σχέση:
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L1 = mυ1r (1), όπου υ1 το μέτρο της γραμμικής 
ταχύτητας του σημειακού σώματος Σ τη χρο-
νική στιγμή t1.
Έστω ω1 το μέτρο της γωνιακής ταχύτητας του 
δίσκου τη χρονική στιγμή t1. Είναι:
ω1 = αγωνt1  ή  ω1 = 20 rad/s.

Το μέτρο υ1 της γραμμικής ταχύτητας του ση-
μειακού σώματος Σ τη χρονική στιγμή t1 υπο-
λογίζεται από τη σχέση: υ1 = ω1r  ή  υ1 = 10 m/s.

Με αντικατάσταση των τιμών των μεγεθών 
στη σχέση (1) προκύπτει: L1 = 0,05 kg · m2/s. 

β. Έστω υ2 το μέτρο της γραμμικής ταχύτητας 
του σημειακού σώματος Σ τη χρονική στιγμή 
t2. Είναι: L2 = mυ2r  ή  υ2 = 16 m/s.

Το μέτρο ω2 της γωνιακής ταχύτητας του δί-
σκου τη χρονική στιγμή t2 υπολογίζεται από τη 
σχέση: υ2 = ω2r  ή  ω2 = 32 rad/s.

Η χρονική στιγμή t2 υπολογίζεται από τη σχέ-
ση: ω2 = αγωνt2  ή  t2 = 8 s.

Έστω Δθ η γωνία στροφής του δίσκου από τη 
χρονική στιγμή t = 0 έως τη χρονική στιγμή t2. 

Είναι: �� �����
1

2
2

2
t   ή  Δθ = 128 rad.

To πλήθος των περιστροφών που εκτελεί ο δί-
σκος από τη χρονική στιγμή t = 0 έως τη χρονι-
κή στιγμή t2 υπολογίζεται από τη σχέση:

�
�

�
�

�2
  ή  Ν = (64/π) περιστροφές.

γ. Έστω τ  η ροπή της δύναμης που ασκείται 
στο σημειακό σώμα Σ από τον δίσκο ως προς 
τον άξονα ′z z  τη χρονική στιγμή t2. Επειδή η 
γωνιακή ταχύτητα του δίσκου μεταβάλλεται 
με σταθερό ρυθμό, η στροφορμή του σημεια-
κού σώματος Σ ως προς τον άξονα ′z z  θα με-

ταβάλλεται και αυτή με σταθερό ρυθμό. Επο-
μένως, ο ρυθμός μεταβολής της στροφορμής 
του σημειακού σώματος Σ ως προς τον άξονα 
′z z  είναι σταθερός. Το μέτρο της ροπής της 

δύναμης που ασκείται το σημειακό σώμα Σ 
από τον δίσκο ως προς τον άξονα z′z υπολο­
γίζεται από τη σχέση:

� �
dL

dt
  ή  � � �

�
L

t
  ή  � � �

�
L

t

2

2

0

0

ή  τ = 0,01 Νm.

δ. Έστω � ��  η γωνία στροφής του δίσκου από 
τη χρονική στιγμή t1 έως τη χρονική στιγμή t2. 

Είναι: � � � � � �� � ����1 2 1 2 1

21

2
( ) ( )t t t t

ή  � � �� 78 rad.

Το μήκος του τόξου που διανύει ένα υλικό ση-
μείο της περιφέρειας του δίσκου από τη χρο-
νική στιγμή t1 έως τη χρονική στιγμή t2 είναι:

s R� ���   ή  s = 78 m.

38. α. Έστω 2  η αλγεβρική τιμή της ταχύτη-
τας του σώματος Σ2 αμέσως μετά την κρούση. 
Επειδή η κρούση είναι ελαστική, ισχύει: 

 


 
2

1

1 2

1

2m

m m
  ή   

2
5 m s/ .

υ
1

υ
2
 = 0

Ο

Ακριβώς πριν

από την κρούση

Αμέσως μετά

την κρούση

Σ1 Σ2 Σ2

�

υ
2

Ο

�


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Το μέτρο της στροφορμής 


L  του σώματος 
Σ2 ως προς τον άξονα ′x x  αμέσως μετά την 
κρούση υπολογίζεται από τη σχέση:

L m 
2 2
    ή  L = 24 kg · m2/s.

β. Έστω υ το μέτρο της ταχύτητας του σώμα-
τος Σ2 τη χρονική στιγμή t1.

φ

  
2

υ

Ο

Α
Σ

2

Δ
Γ

x

h
υ
�

�

βαρU 0
βαρU 0

Για να υπολογίσουμε το μέτρο της ταχύτη-
τας υ,  εφαρμόζουμε την Αρχή Διατήρησης 
της Μηχανικής Ενέργειας για την κίνηση του 
σώματος Σ2 από τη χρονική στιγμή t = 0 αμέ-
σως μετά την κρούση (θέση Α) έως τη χρονική 
στιγμή t1 (θέση Γ). Είναι: 

Εμηχ(Α) = Εμηχ(Γ)  ή  ΚΑ + UA = KΓ + UΓ (1).

Αν θεωρήσουμε ως επίπεδο μηδενικής βαρυτι-
κής δυναμικής ενέργειας το οριζόντιο επίπεδο 
που διέρχεται από το σημείο Α, η σχέση (1) 

γράφεται: 1

2
0

1

2
2 2

2

2

2

2
m m m gh    

ή    
2

2
2gh  (2),  όπου h το ύψος του 

σώματος Σ2 πάνω από το οριζόντιο επίπε-
δο που διέρχεται από το σημείο Α τη χρο-
νική στιγμή t1. Από το ορθογώνιο τρίγωνο 

ΟΔΓ έχουμε: ���� � ( )

( )

��
��

  ή  ���� � x


  ή 

���� �
�


h   ή  h � �( )1 ����   ή  h = 0,8 m.

Με αντικατάσταση των τιμών των μεγεθών 
στη σχέση (2) προκύπτει: υ = 3 m/s.

Το μέτρο της στροφορμής 


′L  του σώματος Σ2 
ως προς τον άξονα ′x x  τη χρονική στιγμή t1 
υπολογίζεται από τη σχέση: � �L m

2
�

ή  L′ = 14,4 kg · m2/s.

γ. Οι δυνάμεις που ασκούνται στο σώμα Σ2 τη 
χρονική στιγμή t1 είναι: το βάρος του w

2
 και 

η δύναμη 


Τ  από το νήμα.

φ

A
Σ

2

Γ
w

2x w
2y

T

w
2

υ
2 
′

Ο

φ

�

Αναλύουμε το βάρος w
2
 του σώματος Σ2 σε 

δύο συνιστώσες: στη συνιστώσα δύναμη w
y2

 
που έχει την ακτινική διεύθυνση στο σημείο 
Γ και στη συνιστώσα δύναμη w

x2
 που είναι 

κάθετη στην ακτινική διεύθυνση στο σημείο 
Γ. Η δύναμη 



Τ  που ασκείται στο σώμα Σ2 από 
το νήμα και η συνιστώσα δύναμη w

y2
 δεν 

δημιουργούν ροπές ως προς τον άξονα ′z z  τη 
χρονική στιγμή t1, διότι οι φορείς τους διέρχο-
νται από τον άξονα αυτόν. Όμως, η συνιστώ-
σα δύναμη w

x2
 δημιουργεί ροπή ως προς τον 

άξονα ′z z  τη χρονική στιγμή t1 (ο φορέας της 
δεν διέρχεται από τον άξονα ′z z ).

Συνεπώς, το μέτρο του ρυθμού μεταβολής της 
στροφορμής του σώματος Σ2 ως προς τον άξο-
να ′z z  τη χρονική στιγμή t1 υπολογίζεται από 

τη σχέση: dL

dt
� ��   ή  dL

dt
w

x

� �   ή  dL

dt
w

x
=    

ή  dL

dt
m g

2
   ή  dL

dt
kg m s 24 3 2 2/ .
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39. α. Η στροφορμή 


L1  του σώματος Σ1 έχει 
τη διεύθυνση του άξονα (1) και φορά προς 
τα κάτω. Το μέτρο της στροφορμής 



L
1
 υπο-

λογίζεται από τη σχέση: L1  = m1υ1d
ή  L1 = m1ωd2  ή  L1 = 0,8 kg · m2/s.

Η στροφορμή 


L2  του σώματος Σ2 έχει τη 
διεύθυνση του άξονα (1) και φορά προς τα 
κάτω. Το μέτρο της στροφορμής 



L
2
 υπολογί-

ζεται από τη σχέση: L m d
2 2 2
  ( )

ή  L m d
2 2

2� ��( )   ή  L2 = 5,12 kg · m2/s.

β. Η στροφορμή 


L  του συστήματος των σω-
μάτων Σ1 και Σ2 υπολογίζεται από τη σχέση:
  

L L L� �
1 2

 (1).

Επειδή τα διανύσματα 


L
1
 και 



L
2
 έχουν την 

ίδια φορά, η σχέση (1) γράφεται:
L = L1 + L2  ή  L = 5,92 kg · m2/s.

γ. Έστω 


′L
1
 και 



′L
2
 οι στροφορμές των σωμά-

των Σ1 και Σ2 ως προς τον άξονα (2). Η στρο-
φορμή 



′L  του συστήματος ως προς τον άξονα 
(2) δίνεται από τη σχέση: 

  

� � � � �L L L
1 2

 (2).

Επειδή τα διανύσματα 


′L
1
 και 



′L
2
 έχουν την 

ίδια φορά, η σχέση (2) γράφεται: � � � � �L L L
1 2

  

ή     L m m
1 1 2 2

2 2
 
 

ή  � � �
�
�

�
�
� � �

�
�

�
�
�L m m

1

2

2

2

2 2
� �
 

ή  � � �L m m
1

4
1 2

2
( )�   ή  L′ = 7 kg · m2/s.

40. α. Έστω υ1 το μέτρο της γραμμικής τα-
χύτητας του σώματος Σ τη χρονική στιγμή t1. 
Είναι: L

1 1
� m�    ή  υ1 = 50 m/s.

β. Έστω dL

dt

����  το μέτρο του ρυθμού μεταβο-

λής της στροφορμής του συστήματος ράβδος – 

σώμα Σ. Είναι: dL

dt

����
������ �

ή  dL

dt
F

���� ��
1

 (1).

Επειδή η ροπή της δύναμης 


F
1
 ως προς τον 

άξονα ′z z  είναι σταθερή, ο ρυθμός μεταβολής 
της στροφορμής του συστήματος ως προς τον 
άξονα ′z z  είναι σταθερός. Συνεπώς, ισχύει:
dL

dt

L

t

���� �����
�
�

  ή  �
�
L

t

L

t

���� �
�
�

0

0
1

ή  kg m s40 2 2/
ΔLσυστ

Δt .

γ. Από τη σχέση (1) έχουμε:

dL

dt
F=

1

2

   ή  F

dL

dt
1

2

=


  ή  F1 = 40 N.

δ. Ισχύει: dL

dt

�
�����

������

ή  dL

dt
F F

�
� �����

1 2

2



   ή  0
2

1 2
� �F F





ή  F
F

2

1

2
=   ή  F2 = 20 N.

ε. Έστω ω1 το μέτρο της γωνιακής ταχύτητας 
του συστήματος τη χρονική στιγμή t1. Είναι:
 1 1    ή  ω1 = 25 rad/s.

Έστω αγων το μέτρο της γωνιακής επιτάχυνσης 
του συστήματος από τη χρονική στιγμή t = 0 
έως τη χρονική στιγμή t1. Είναι: ω1 = αγωνt1  ή  
αγων = 5 rad/s2. Η γωνία στροφής Δθ1 του συ-
στήματος από τη χρονική στιγμή t = 0 έως τη 
χρονική στιγμή t1 υπολογίζεται από τη σχέση: 

�� ����1 1

21

2
� t   ή  Δθ1 = 62,5 rad.



2. 5  Στροφορµή

219

Η γωνία στροφής Δθ2 του συστήματος από 
τη χρονική στιγμή t1 έως τη χρονική στιγμή t2 
υπολογίζεται από τη σχέση: Δθ2 = ω1Δt
ή  �� �

2 1 2 1
� �( )t t   ή  Δθ2 = 87,5 rad.

Συνεπώς, είναι: Δθ = Δθ1 + Δθ2  
ή  Δθ = 150 rad.

41. α. Είναι: dL

dt

�
�
�

�
�
� �
����

����

ή  dL

dt
F d

�
�
�

�
�
� � ��

�
�

�
�
�

����



2

ή  dL
dt

kg m s20 2 2/ .

β. Έστω 


L  η στροφορμή του συστήματος ρά-
βδος – σημειακά σώματα τη χρονική στιγμή t1. 

Είναι:  dL

dt

L

t

�
�
�

�
�
� �
����

�����
�

 

ή  dL

dt

L

t

�
�
�

�
�
� �

�
�����

0

0
1

  ή  dL

dt

L

t

�
�
�

�
�
� �
���� 1

ή  L
dL

dt
t 








1
  ή  L = 80 kg · m2/s.

γ. Eπειδή η ράβδος είναι αβαρής, η στροφορμή 


L  του συστήματος ράβδος – σημειακά σώμα-
τα τη χρονική στιγμή t1 ισούται με τη στροφορ-
μή του συστήματος των σημειακών σωμάτων 
Σ1 και Σ2. Συνεπώς, είναι: 

  

L L L� �
1 2

 (1), 
όπου 



L
1
 και 



L
2
 οι στροφορμές των σωμάτων 

Σ1 και Σ2 αντίστοιχα τη χρονική στιγμή t1.

Τα διανύσματα L1 και L2 έχουν την ίδια φορά, 
οπότε η σχέση (1) γίνεται: L = L1 + L2  ή

L m d m d� � �
1 1 2 2
� � ( )  (2) όπου υ1 και υ2 τα 

μέτρα των γραμμικών ταχυτήτων των σωμά-
των Σ1 και Σ2 τη χρονική στιγμή t1. 

Έστω ω το μέτρο της γωνιακής ταχύτητας του 
συστήματος τη χρονική στιγμή t1. Είναι:
υ1 = ωd (3) και � �

2
� �( ) d  (4).

Η σχέση (2), λόγω των σχέσεων (3) και (4), 
γίνεται: L m d m d� � �

1

2

2

2� �( )

ή  L m d m d� � ��� ��1

2

2

2
( ) �   ή  ω = 10 rad/s.

Επομένως, από τις σχέσεις (3) και (4) προκύ-
πτει: υ1 = 20 m/s και υ2 = 40 m/s.

δ. Είναι: ω = αγωνt1  ή  αγων = 2,5 rad/s2.

42. α. Οι δυνάμεις που ασκούνται στο ση­
μειακό σώμα Σ1 τη χρονική στιγμή t = 0 είναι: 
το βάρος του w

1
 και η τάση 



Τ1  από το νήμα (1).

ΟA

Γ

Σ
1

Σ
2

w
1

�1

�2

t = 0

Ο ρυθμός μεταβολής της στροφορμής του ση-
μειακού σώματος Σ1 ως προς τον άξονα ′x x  

τη χρονική στιγμή t = 0 είναι: dL

dt



� ��  

ή  dL

dt
w T



 � �� �
1 1

 (1).

Επειδή η τάση 


Τ1  του νήματος διέρχεται από 
τον άξονα ′x x,  η ροπή της ως προς τον άξονα 
αυτόν είναι ίση με μηδέν ( ).





��
1

0�  

Επομένως, η σχέση (1) γράφεται: dL

dt
w



� �
1

 

ή  dL

dt
w



� �
1

  ή  dL

dt
w

�
�=

1 1
  ή  dL

dt
m g

�
�=

1 1
 

ή  dL
dt

kg m s


�� ��36 2 2/ . 
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β. Έστω υ1  η ταχύτητα του σημειακού σώ-
ματος Σ1 ακριβώς πριν από την κρούση με το 
σημειακό σώμα Σ2.

Ο

(1) (2)

Σ1 Σ2

υ′
1

υ′
2

Πριν από

την κρούση

Μετά

την κρούση

ΟA (1)

(1) (2)

Γ

Σ1

Σ1
Σ2

υ = 0

υ
1

βαρU 0=
βαρU 0=

Από την Α.Δ.Μ.Ε. για την κίνηση του σώματος 
Σ1 μεταξύ των θέσεων Α και Γ πριν από την 
κρούση, θεωρώντας ως επίπεδο μηδενικής βα-
ρυτικής δυναμικής ενέργειας το οριζόντιο επί-
πεδο που διέρχεται από το σημείο Γ, έχουμε:
Εμηχ(Α) = Εμηχ(Γ)  ή  ΚΑ + UA = KΓ + UΓ 

ή  0
1

2
0

1 1 1 1

2  m g m    ή  
1 1

2 g  

ή  υ1 = 6 m/s.

Η μεταβολή της στροφορμής του σημειακού 
σώματος Σ1 από τη χρονική στιγμή t = 0 έως τη 
χρονική στιγμή t1 δίνεται από τη σχέση:

�
  

L L L� ���� ���   ή  �
 

L L� ���  

ή, αλγεβρικά:  ΔL = Lτελ  ή  ΔL = L1(πριν) (2).

Επιλέγοντας ως θετική φορά τη φορά από τη 
σελίδα προς τον αναγνώστη, η σχέση (2) γρά-
φεται: ΔL = +L1(πριν)  ή  L m 

1 1 1
   

ή  ΔL = +21,6 kg · m2/s.

γ. Έστω  1  η ταχύτητα του σώματος Σ1 αμέ-
σως μετά την κρούση. Επειδή η κρούση είναι 

ελαστική, ισχύει:   


 
1

1 2

1 2

1

m m

m m
 

ή    
1

2 m s/ .  

Η μεταβολή της στροφορμής του σώματος Σ1 
εξαιτίας της κρούσης δίνεται από τη σχέση:

�
  

L L L
1 1 1
� �

( ) ( )���� ����΄   ή, αλγεβρικά:

ΔL1 = L1(μετά) – L1(πριν).  

ή, θεωρώντας ως θετική φορά τη φορά από τη 
σελίδα προς τον αναγνώστη:

L m m
1 1 1 1 1
      

ή  L m
1 1 1 1
       

ή  ΔL1 = –28,8 kg · m2/s.

δ. Έστω  2  η ταχύτητα του σώματος Σ2 αμέ-

σως μετά την κρούση. Είναι:  


 
2

1

1 2

1

2m

m m
 

ή    
2

4 m s/ .  

Έστω 


L
2( )����́  η στροφορμή του σημειακού 

σώματος Σ2 αμέσως μετά την κρούση και 


L��  
η στροφορμή του συστήματος των σημειακών 
σωμάτων Σ1 και Σ2 αμέσως μετά την κρούση. 
Είναι: 

  

L L L�� ���� ����� �
1 2( ) ( )΄ ΄  

ή, αλγεβρικά: Lολ = L1(μετά) + L2(μετά)

ή, θεωρώντας ως θετική φορά τη φορά από τη 
σελίδα προς τον αναγνώστη:

L m m     
1 1 1 2 2 2

   

ή  Lολ = 21,6 kg · m2/s.
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43. α. Επειδή, όπως φαίνεται από το δοθέν 
διάγραμμα, η αλγεβρική τιμή της στροφορ-
μής του υλικού σημείου αυξάνεται με σταθε-
ρό ρυθμό στο χρονικό διάστημα Δt1, από τη 
χρονική στιγμή t = 0 έως τη χρονική στιγμή 
t1, η αλγεβρική τιμή του ρυθμού μεταβολή της 
στροφορμής του υλικού σημείου σε αυτό το 
χρονικό διάστημα είναι σταθερή. Επομένως, 

είναι: dL

dt

L

t
�
�
�

   ή  �
�
L

t
kg m s�

�
�

�
2 0 4

2 0

2 2,
/  

ή  �
�
L

t
kg m s� �0 8

2 2
, .  

Επομένως τη χρονική στιγμή t1 = 1 s το μέτρο 
του ρυθμού μεταβολής της στροφορμής του 

υλικού σημείου είναι: dL
dt

kg m s�� ��0 8 2 2, .

β. Η αλγεβρική τιμή της συνισταμένης ροπής 
που ασκείται στο υλικό σημείο ως προς τον 
άξονα ′z z  στο χρονικό διάστημα Δt1 είναι ίση 
με την αλγεβρική τιμή του ρυθμού μεταβολής 
της στροφορμής του ως προς τον άξονα ′z z  
στο ίδιο χρονικό διάστημα. Είναι:

�� �
dL

dt
   ή  �

F
1

�
dL

dt
   ή  FR

1
=

dL

dt
 

ή  F1 = 4 N.

γ. Από τη χρονική στιγμή t1 έως τη χρονική 
στιγμή t2 η αλγεβρική τιμή της στροφορμής 
του υλικού σημείου μειώνεται με σταθερό 

ρυθμό: dL

dt
/

�
� � �0 4

2 2
, .kg m s  Έχουμε:

dL

dt

�
�

��
�
L

t
  ή  � �

�
�

0,4
0 2

2
2

t
  ή  t2 = 7 s.

δ. Επειδή το μέτρο της στροφορμής του υλι-
κού σημείου στο χρονικό διάστημα από τη 
χρονική στιγμή t1 έως τη χρονική στιγμή t2 
μειώνεται με σταθερό ρυθμό, το υλικό σημείο 
εκτελεί ομαλά επιβραδυνομένη στροφική κί-
νηση. Επομένως, η ροπή της δύναμης 



F
2
 έχει 

αντίθετη κατεύθυνση από την κατεύθυνση της 
ροπής της δύναμης 



F
1
.

Η αλγεβρική τιμή της συνισταμένης ροπής που 
ασκείται στο υλικό σημείο ως προς τον άξονα 
′z z  στο χρονικό διάστημα Δt2, από τη χρονική 

στιγμή t1 έως τη χρονική στιγμή t2, είναι ίση  
με την αλγεβρική τιμή του ρυθμού μεταβολής 
της στροφορμής του ως προς τον άξονα ′z z  
στο ίδιο χρονικό διάστημα. Είναι:

� � �
�

�
dL

dt
  ή  � �

F F

dL

dt
1 2

� �
�
 

ή  FR F R
dL

dt
1 2
� �

�
 

ή  F F

dL

dt

R
2 1
� �

�

  ή  F2 = 6 N.

ε. Από το δοθέν διάγραμμα προκύπτει ότι το 
μέτρο της στροφορμής του υλικού σημείου τη 
χρονική στιγμή t = 0 είναι: L kg m s

0

2
0 4� �, ./  

Έστω ω0 το μέτρο της γωνιακής ταχύτητας του 
υλικού σημείου τη χρονική στιγμή t = 0. Είναι:

L = mυ0R  ή  L = mω0R
2  ή  ω0 = 50 rad/s.

Από το δοθέν διάγραμμα προκύπτει ότι το μέ-
τρο της στροφορμής του υλικού σημείου τη 
χρονική στιγμή t1 είναι: L kg m s

1

2
2� � .  
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Έστω ω1 το μέτρο της γωνιακής ταχύτητας του 
υλικού σημείου τη χρονική στιγμή t1. Είναι:

L1 = mυ1R  ή  L1 = mω1R
2  ή  ω1 = 250 rad/s.

Έστω αγων(1) το μέτρο της γωνιακής επιτάχυν-
σης του υλικού σημείου στο χρονικό διάστημα 
Δt1. Είναι: ω1 = ω0 + αγων(1)Δt1

ή  � � �
���( )1

1 0

1

�
�
�t

 

ή  αγων(1) = 100 rad/s2.

Έστω Δθ1 η γωνία στροφής που διαγράφει η 
επιβατική ακτίνα του υλικού σημείου στο χρο-
νικό διάστημα Δt1. Είναι:

� � �� � ����1 0 1 1 1

21

2
� �t t

( )
( )  

ή  Δθ1 = 300 rad.

Όπως προκύπτει από το δοθέν διάγραμμα, το 
μέτρο της στροφορμής του υλικού σημείου τη 
χρονική στιγμή t2 είναι L2 = 0. Επομένως, το 
μέτρο της γωνιακής ταχύτητας του υλικού ση-
μείου τη χρονική στιγμή t2 είναι ω2 = 0. 

Έστω αγων(2) το μέτρο της γωνιακής επιβράδυν-
σης του υλικού σημείου στο χρονικό διάστημα 
Δt2. Είναι: � � ����2 1 2 2

� �
( )
�t  

ή  � �
���( )2

1

2 1

�
�t t

 

ή  αγων(2) = 50 rad/s2.

Έστω Δθ2 η γωνία στροφής που διαγράφει η 
επιβατική ακτίνα του υλικού σημείου στο χρο-
νικό διάστημα Δt2. Είναι:

� � �� � ����2 1 2 2 2

21

2
� �t t

( )
( )  

ή  Δθ2 = 625 rad.

Επομένως, η γωνία στροφής που διαγράφει η 
επιβατική ακτίνα του υλικού σημείου από τη 

χρονική στιγμή t = 0 έως τη χρονική στιγμή t2 
είναι: Δθ = Δθ1 + Δθ2  ή  Δθ = 925 rad.

44. α. Έστω υ το μέτρο της ταχύτητας του 
συσσωματώματος στο ανώτερο σημείο της 
τροχιάς του. Στο ανώτερο σημείο της κυκλι-
κής τροχιάς του συσσωματώματος, ισχύει:

ΣFακτ = Fκ  ή     
w

m m( )
1 2

2


ή      ( )
( ) .

m m
m m g

1 2

2

1 2




Για να εκτελέσει ανακύκλωση το συσσωμάτω-
μα, πρέπει να ισχύει: � � 0   

ή  ( )
( )

m m
m m g

1 2

2

1 2
0

   


ή    g.

Επειδή, σύμφωνα με την εκφώνηση, το συσ-
σωμάτωμα μόλις που εκτελεί ανακύκλωση, 
ισχύει:   g   ή    2 5 m s/ .  

Το μέτρο της στροφορμής 


L  του συσσωμα-
τώματος στην ανώτερη θέση της τροχιάς του 
υπολογίζεται από τη σχέση: 

L m m ( )
1 2

   ή  L kg m s�� ��20 5 2 . 

υ
0

Ο

Σ1 Σ2
υ

ΣΑ

Σ
1
+ Σ2

� �

υ

Γ

Τ

w

Ο
�

w

Δ
T

βαρU 0
βαρU 0
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β. Έστω υΣ το μέτρο της ταχύτητας του συσ-
σωματώματος αμέσως μετά την κρούση. Από 
την Α.Δ.Μ.Ε. για την κίνηση του συσσωμα-
τώματος από τη θέση Α στη θέση Γ, μετά την 
κρούση, έχουμε: Εμηχ(Α) = Εμηχ(Γ)  ή

KA + UA = KΓ + UΓ 

ή  1

2
0

1

2
1 2

2

1 2

2
m m m m       

                                      m m g
1 2

2
 

ή  υΣ = 10 m/s.

Από την Α.Δ.Ο. για το σύστημα των δύο σω-
μάτων κατά την κρούση, έχουμε:
 

p p   ( ) ( )
 ΄

ή  m1υ0 = (m1 + m2)υΣ  ή  υ0 = 50 m/s.

Το μέτρο της στροφορμής 


L
1
 του σώματος Σ1 

ως προς τον άξονα ′x x  ακριβώς πριν από την 
κρούση δίνεται από τη σχέση: 

L m
1 1 0
     ή  L1 = 100 kg m2/s.

γ. Το μέτρο του ρυθμού μεταβολής της στρο-
φορμής του συσσωματώματος ως προς τον 
άξονα ′x x  κατά την κίνησή του από την κα-
τώτερη έως την ανώτερη θέση της κυκλικής 
τροχιάς που διαγράφει μετά την κρούση γί-
νεται μέγιστο στη θέση όπου το νήμα γίνεται 
οριζόντιο για πρώτη φορά μετά την κρούση 

(θέση Δ). Είναι: dL

dt
max

� ��   ή  dL

dt
w

max

� �

ή  dL

dt
m m g

max

( )� �
1 2



ή  dL
dt

kg m s
max

�� ��100 2 2/ .

45. α. Επειδή η ράβδος ισορροπεί, ισχύει:

Στ(Α) = 0  ή  � � �
��F F F
� � �

1 2

0

ή  0 0
1 1 2 2

� � �F F    ή  F2 = 8 N.

β. Είναι:
dL

dt

�
�
�

�
�
� �
����

����   ή  dL

dt
F

�
�
�

�
�
� �
����

2 2


 ή  dL
dt

kg m s4 2 2.
συστ

γ. Έστω L1 το μέτρο της στροφορμής του συ-
στήματος ράβδος – σώμα Σ τη χρονική στιγμή 
t1. Επειδή ο ρυθμός μεταβολής της στροφορ-
μής του συστήματος είναι σταθερός, ισχύει:


L

t
F

2 2
   ή  L

t
F

1

1

2 2

0  

ή  L F t
1 2 2 1
=    ή  L kg m s

1

2
8� � / .

Έστω LΣ το μέτρο της στροφορμής του σώμα-
τος Σ τη χρονική στιγμή t1. Επειδή η ράβδος 
είναι αβαρής, το μέτρο της στροφορμής του 
συστήματος ράβδος – σώμα Σ είναι κάθε χρο-
νική στιγμή ίσο με το μέτρο της στροφορμής 
του σώματος Σ. Επομένως, είναι:
LΣ = L1 = 8 kg · m2/s.

δ. Έστω υ το μέτρο της γραμμικής ταχύτητας 
του σώματος Σ τη χρονική στιγμή t1. Είναι:
L m     ή  υ = 8 m/s.

Έστω ω το μέτρο της γωνιακής ταχύτητας του 
συστήματος τη χρονική στιγμή t1. Είναι:
     ή  ω = 8 rad/s.

Το μέτρο της γωνιακής επιτάχυνσης του συ-
στήματος υπολογίζεται από τη σχέση: 
ω = αγωνt1  ή  αγων = 4 rad/s2.
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ε. Το σώμα Σ τη χρονική στιγμή t1 έχει επιτρό-
χια επιτάχυνση ��  και κεντρομόλο επιτάχυν-
ση ��.  

Το μέτρο της επιτρόχιας επιτάχυνσης του σώ-
ματος Σ είναι σταθερό και ίσο με: 
� �� ����    ή  αε = 4 m/s2.

Το μέτρο της κεντρομόλου επιτάχυνσης του 
σώματος Σ τη χρονική στιγμή t1 υπολογίζεται 
από τη σχέση:
� �� �

2
   ή  ακ = 64 m/s2.

Επειδή τα διανύσματα ��  και ��  είναι κάθετα 
μεταξύ τους, το μέτρο της επιτάχυνσης α  του 
σώματος Σ τη χρονική στιγμή t1 υπολογίζεται 

από τη σχέση: � � �� �� �2 2

ή  � � 4 112
2

. m s/   ή  ακ = 64,12 m/s2.

46. α. Έστω ω το μέτρο της γωνιακής ταχύ-
τητας του συστήματος ράβδος – σημειακά σώ-
ματα τη χρονική στιγμή t1. Είναι:

 
1

2
    ή  ω = 30 rad/s.

Το μέτρο υ2 της γραμμικής ταχύτητας του σώ-
ματος Σ2 τη χρονική στιγμή t1 υπολογίζεται 

από τη σχέση:  2 2
    ή  υ2 = 30 m/s.

Το μέτρο της στροφορμής 


L
1
 του σώματος Σ1 

τη χρονική στιγμή t1 είναι:  L m
1 1 1

2
 



ή  L kg m s
1

2
30� � / .

Το μέτρο της στροφορμής 


L
2
 του σώματος Σ2 

τη χρονική στιγμή t1 είναι: L m
2 2 2

2
 



ή  L kg m s
2

2
60� � / .

Τα διανύσματα των στροφορμών 


L
1
 και 



L
2
 

είναι κάθετα στη σελίδα, με φορά από τη σε-
λίδα προς τον αναγνώστη (σύμφωνα με τον 

κανόνα του δεξιού χεριού). Η στροφορμή 


L  
του συστήματος των σημειακών σωμάτων Σ1 
και Σ2 δίνεται από τη σχέση: 

  

L L L� �
1 2

 (1).

Επειδή τα διανύσματα 


L
1
 και 



L
2
 έχουν την 

ίδια φορά, από τη σχέση (1) προκύπτει:

L = L1 + L2  ή  L = 90 kg · m2/s. 

β. Είναι: ω = αγωνt1  ή  αγων = 6 rad/s2.

γ. Ο ρυθμός μεταβολής της στροφορμής του 
συστήματος ράβδος – σημειακά σώματα δίνε-

ται από τη σχέση: dL

dt

�
�
�

�
�
� �
����

����  (2).

Οι εξωτερικές δυνάμεις που ασκούνται στο 
σύστημα είναι: τα βάρη w

1
 και w

2
 των σω-

μάτων Σ1 και Σ2 αντίστοιχα, η δύναμη 


F��  από 
τον άξονα περιστροφής και οι δυνάμεις 



F
1
 και 



F
2
 του ζεύγους δυνάμεων. Τα βάρη w

1
,  w

2
 

και η δύναμη 


F��  δεν δημιουργούν ροπές ως 
προς τον άξονα ′z z.  Συνεπώς, η σχέση (2) γί-

νεται: 
dL

dt










 ΄   ή  dL

dt
Fd

�
�
�

�
�
� �
����

1
 

(3), όπου d ο μοχλοβραχίονας του ζεύγους δυ-

νάμεων.

Από τη σχέση (3) προκύπτει ότι ο ρυθμός με-
ταβολής της στροφορμής του συστήματος εί-
ναι σταθερός, οπότε μπορεί να υπολογιστεί ως 

εξής: dL

dt

L

t

�
�
�

�
�
� �
����

�����
�

ή  dL

dt

L L

t t











 

 

ή  dL

dt

L

t







 


0

0
1

ή  dL

dt
kg m s







 


18
2 2

/ .
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Επομένως, από τη σχέση (3) προκύπτει ότι:
d = 0,36 m.

δ. Είναι: dL

dt ����
���� �

ή  dL

dt
F d

����

� ��
�
�

�
�
�2

2



ή  dL
dt

kg m s32 2 2/ .
συστ

47. α. Ο ρυθμός μεταβολής της στροφορμής 
του συστήματος της ράβδου και των σημεια­
κών σωμάτων Σ1 και Σ2 ως προν τον άξονα 
′x x  τη χρονική στιγμή t = 0 δίνεται από τη 

σχέση: dL

dt





� ��    ή  dL

dt
w w



 

� �� �
1 2

 

ή, αλγεβρικά:  dL

dt
w w

� �� �
1 2

 (1).

Α Γ

ΜΣ
1

Σ
2

w
1

w
2

Θεωρώντας ως θετική φορά τη φορά από τη 
σελίδα προς τον αναγνώστη, η σχέση (1) γρά-

φεται: dL

dt
w w� �

1 2

2 2

   

ή  dL

dt
m m g� �( )

1 2

2

  

ή  dL
dt

kg m s�� �� ��50 2 2/ . 

β. Επειδή η αλγεβρική τιμή του ρυθμού μετα-
βολής της στροφορμής του συστήματος ρά-
βδος – σημειακά σώματα Σ1 και Σ2 ως προς 
τον άξονα ′x x  τη χρονική στιγμή t = 0 είναι 

θετική, το σύστημα στρέφεται αντίθετα από τη 
φορά περιστροφής των δεικτών του ρολογιού.

Α

Α

Γ

Γ

Μ
Σ
1

Σ
1

Σ
2

Σ
2

w
1yw

1x

w
1

φ

w
2y

w
2x

w
2

φ

φ

φ

t
1

Ο ρυθμός μεταβολής της στροφορμής του συ-
στήματος ράβδος – σημειακά σώματα Σ1 και 
Σ2 ως προς τον άξονα ′x x  τη χρονική στιγμή 

t1 υπολογίζεται από τη σχέση: dL

dt



� ��  

ή  dL

dt
w w



 � �� �
1 2

ή, αλγεβρικά: dL

dt
w w

� �� �
1 2

 

ή  dL

dt
w w

y y
� �

1 2

2 2

   

ή  dL

dt
m g m g� �

1 2

2 2
���� ����

   

ή  dL

dt
m m g� �( )

1 2

2
����

  

ή  dL
dt

kg m s�� �� ��25 2 2/ .

γ. Έστω ω το μέτρο της γωνιακής ταχύτητας 
του συστήματος ράβδος – σημειακά σώματα 
τη χρονική στιγμή t2. Τα μέτρα υ1 και υ2 των 
γραμμικών ταχυτήτων των σωμάτων Σ1 και Σ2 



Απαντήσεις – Λύσεις θεµάτων

226

αντίστοιχα τη χρονική στιγμή t2 δίνονται από 

τις σχέσεις:  
1

2
   (2)  και   2 2

   (3).

βαρU 0=
βαρU 0=

Α

Α

Γ

Γ

ΜΣ1

Σ1

t = 0

Θέση ΙΙ

Θέση Ι
Σ2

Σ2

w
1

υ
2

υ
1

t2

Από την Αρχή Διατήρησης της Μηχανικής 
Ενέργειας για την κίνηση του συστήματος από 
την αρχική του θέση (Θέση Ι) στην τελική του 
θέση (Θέση ΙΙ), θεωρώντας ως επίπεδο μηδε-
νικής βαρυτικής δυναμικής ενέργειας το ορι-
ζόντιο επίπεδο που διέρχεται από το κατώτερο 
σημείο της κυκλικής τροχιάς που διαγράφει το 
σώμα Σ1, έχουμε: Εμηχ(αρχ) = Εμηχ(τελ)  

ή  Καρχ + Uαρχ = Κτελ + Uτελ  

ή  0
2 2

1

2
1 2 1 1

2  m g m g m
 



                                     1

2
2 2

2

2
m m g 

ή  
1

2

1

2

1

2 2
1 2 1

2

m g m g m 



� � �
�
�

�
�
��

                                    �
�
�
�

�
�
� �

1

2 2
2

2

2
m m g�





ή  1

2

1

2

1

8

1

8
1 2 1

2 2

2

2 2
m g m g m m   � � �� �

ή  � � �
�

4
1 2

1 2

( )

( )

m m g

m m 

  ή  ω = 2 rad/s.

Η στροφορμή 


L  του συστήματος των σημεια­
κών σωμάτων Σ1 και Σ2 ως προς τον άξονα 
′x x  τη χρονική στιγμή t2 δίνεται από τη σχέ-

ση: 
  

L L L� �
1 2

 (4)  όπου 


L
1
 και 



L
2
 οι στρο-

φορμές των σημειακών σωμάτων Σ1 και Σ2 ως 
προς τον άξονα ′x x  τη χρονική στιγμή t2.

Επειδή οι στροφορμές 


L
1
 και 



L
2
 έχουν τη δι-

εύθυνση του άξονα ′x x  και φορά από τη σελί-
δα προς τον αναγνώστη, η σχέση (4) γράφεται:

L = L1 + L2   ή  L m m 
1 1 2 2

2 2
 
    

ή  L m m� �
�
�

�
�
� � �

�
�

�
�
�1

2

2

2

2 2
� �
    

ή  L m m� �
1

4
1 2

2
( )�   

ή  L = 50 kg · m2/s.

48. α. Έστω υ1 η αλγεβρική τιμή της ταχύ-
τητας του σημειακού σώματος Σ1 ακριβώς 
πριν από την κρούση. Από την Α.Δ.Μ.Ε. για 
την κίνηση του σημειακού σώματος Σ1 μεταξύ 
των θέσεων Α και Γ της τροχιάς του, πριν από 
την κρούση, θεωρώντας ως επίπεδο μηδενικής 
δυναμικής ενέργειας το οριζόντιο επίπεδο που 
διέρχεται από το σημείο Γ, έχουμε:

Εμηχ(Α) = Εμηχ(Γ)  ή  ΚΑ + UA = KΓ + UΓ

ή  1

2

1

2
0

1 0

2

1 1 1

2
m m gR m     

ή  | | 
1 0

2
2  gR   ή  |υ1| = 5 m/s

ή  υ1 = +5 m/s.

Έστω L1 το μέτρο της στροφορμής του σώμα-
τος Σ1 ως προς τον άξονα ′x x  ακριβώς πριν 
από την κρούση. Είναι:  L1 = m1|υ1|R

ή  L1 = 2,25 kg · m2/s. 
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β. Έστω 1  η αλγεβρική τιμή της ταχύτητας 
του σημειακού σώματος Σ1 αμέσως μετά την 
κρούση. Από την Α.Δ.Μ.Ε. για την κίνηση 
του σώματος Σ1 μεταξύ των θέσεων Γ και Α 
της τροχιάς του μετά την κρούση, θεωρώντας 
ως επίπεδο μηδενικής δυναμικής ενέργειας το 
οριζόντιο επίπεδο που διέρχεται από το σημείο 
Γ, έχουμε: Εμηχ(Α) = Εμηχ(Γ)

ή  ΚΓ + UΓ = KΑ + UΑ

ή  1

2
0 0

1 1

2

1
m m gR     

ή  | | 
1

2gR   ή  | | 
1

3 m s/

ή    
1

3 m s/ .

Έστω ′L
1
 το μέτρο της στροφορμής του ση-

μειακού σώματος Σ1 ως προς τον άξονα ′x x  
αμέσως μετά την κρούση. Είναι:

  L m R
1 1 1

| |   ή  L1 = 1,35 kg · m2/s.

γ. Επειδή η κρούση είναι ελαστική, ισχύει: 

  


 
1

1 2

1 2

1

m m

m m
  ή  m2 = 4 kg.

Έστω 2  η αλγεβρική τιμή της ταχύτητας 
του σημειακού σώματος Σ2 αμέσως μετά την 

κρούση. Είναι:  


 
2

1

1 2

1

2m

m m
 

ή    
2

2 m s/   ή  | | . 
2

2 m s/

Το μέτρο της στροφορμής του σημειακού σώ-
ματος Σ2 ως προς τον άξονα ′x x  αμέσως μετά 
την κρούση είναι:   L m

2 2 2
| |   

ή  � � �L kg m s
2

2
3 6, ./  

Έστω 


L��  η στροφορμή του συστήματος των 
σωμάτων Σ1 και Σ2 ως προς τον άξονα ′x x  

αμέσως μετά την κρούση. Είναι:
  

L L L�� � � � �
1 2

 (1). 

Η στροφορμή 


′L
1
 ως προς τον άξονα ′x x  εί-

ναι κάθετη στο επίπεδο της κυκλικής τροχιάς 
που διαγράφει το σώμα Σ1 με φορά από τον 
αναγνώστη προς τη σελίδα, ενώ η στροφορμή 


′L
2
 ως προς τον ίδιο άξονα είναι κάθετη στο 

επίπεδο τη κυκλικής τροχιάς που διαγράφει 
το σώμα Σ2 με φορά από τη σελίδα προς τον 
αναγνώστη. Αν θεωρήσουμε ως θετική φορά 
τη φορά από τη σελίδα προς τον αναγνώστη, 
τότε η σχέση (1) γράφεται:

L L L�� � � � � �
1 2

   ή  L kg m s�� � � �2 25
2

, /  

ή  L kg m s2 25 2, /ολ .

δ. Έστω ∆


L
1
 η μεταβολή της στροφορμής τού 

σώματος Σ1 ως προς τον άξονα ′x x  εξαιτίας 

της κρούσης. Είναι: �
  

L L L
1 1 1
� �

( ) ( )���� ����΄  

ή  �
  

L L L
1 1 1
� � �  ή θεωρώντας ως θετική φορά 

τη φορά από τη σελίδα προς τον αναγνώστη:

�L L L
1 1 1
� � � �  

ή  � � � � �L kg m s
1

2
3 6, /  

ή  L kg m s1
23 6, /Δ . 

Έστω ∆


L
2

 η μεταβολή της στροφορμής του 
σώματος Σ2 ως προς τον άξονα ′x x  εξαιτίας 

της κρούσης. Είναι: �
  

L L L
2 2 2
� �

( ) ( )���� ����΄

ή  �
 

L L
2 2
� �   ή  �L kg m s

2

2
3 6� � �, /  

ή  L kg m s2
23 6, /Δ . 

ε. Οι δυνάμεις που ασκούνται στο σώμα Σ2 
τη χρονική στιγμή στην οποία το νήμα σχη-
ματίζει για πρώτη φορά μετά την κρούση γω-
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νία � � �30  με την κατακόρυφο που διέρχεται 
από το σημείο Ο είναι: το βάρος του w

2
 και η 

τάση 


Τ  από το νήμα.

φ

Σ
2

Σ
2

w
2x w

2y

T

w
2

υ
2 


Ο

φ

Αναλύουμε το βάρος σε δύο κάθετες μεταξύ 
τους συνιστώσες w

x2
 και w

y2
,  όπως φαίνε-

ται στο παραπάνω σχήμα.

Έστω dL

dt
 το μέτρο του ζητούμενου ρυθμού 

μεταβολής της στροφορμής του σώματος Σ2 

ως προς τον άξονα ′x x.  Είναι: dL

dt
� ��  

ή  dL

dt
w

x

 
2

  ή  dL

dt
w

x
=

2
  

ή  dL

dt
m g�

2
���  

ή  dL
dt

kg m s�� ��9 2 2/ .
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2.6  Διατήρηση της Στροφορµής

ΘΕΜΑΤΑ Α

Α.	Θέµατα πολλαπλής επιλογής

  4. γ   5. δ   6. δ   7. β

  8. γ   9. δ 10. γ 11. β

Β.	Θέµατα του τύπου Σωστό/Λάθος

12. α. Σ β. Λ γ. Λ δ. Λ ε. Σ

13. α. Σ β. Λ γ. Λ δ. Λ ε. Λ
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14. Σωστή επιλογή είναι η β.

Το μέτρο ω της τελικής γωνιακής ταχύτητας 
της ράβδου υπολογίζεται από τη σχέση:

   
0 0

75

100
  ή    1

4
0

 (1).

Επειδή η στροφορμή του συστήματος δια­
τηρείται σταθερή, ισχύει: 

 

L L 

ή  2 2
2

0
m r m     ή  � �

0

2

2

2
r � �

�
�

�
�
�
   ή, λόγω 

της σχέσης (1):  r =
��
4

.

15. A. Σωστή επιλογή είναι η γ. 

Η δύναμη που ασκεί το νήμα στο σφαιρίδιο 
δεν δημιουργεί ροπή ως προς το σημείο Κ. Συ-
νεπώς, η στροφορμή του σφαιριδίου διατηρεί-
ται σταθερή. Ισχύει: 

 

L L 

ή  m R m R 
0 1 2

  

ή   
0 1

2

2

2
R R   ή   

0 1

2 1

2

16
R

R

ή  ω = 16ω0 (1).

Β. Σωστή επιλογή είναι η β.

Έστω 


Τ  η τάση του νήματος που ασκείται στο 
σφαιρίδιο από το νήμα, όταν διαγράφει κυκλι-
κή τροχιά ακτίνας R1.

Η τάση 


Τ  του νήματος λειτουργεί ως κεντρο-
μόλος δύναμη. Επειδή το νήμα είναι αβαρές, 
το μέτρο της δύναμης 



F  που ασκείται στο 
ελεύθερο άκρο Α του νήματος είναι ίσο με το 
μέτρο της δύναμης 



Τ.  Συνεπώς, ισχύει:

F = T  ή  F = Fκ ή  F
m

R



0

2

1

ή  F
m R

R


 
0 1

2

1

  ή  F m R 
0

2

1
 (2).

Έστω ′F  το μέτρο της δύναμης που ασκείται 
στο ελεύθερο άκρο Α του νήματος, όταν το 
σφαιρίδιο διαγράφει κυκλική τροχιά ακτίνας 
R2.

Επειδή το νήμα είναι αβαρές, το μέτρο ′F  της 
δύναμης που ασκείται στο ελεύθερο άκρο Α 
του νήματος είναι ίσο με το μέτρο της νέας 
τάσης 



��  του νήματος ( ).� � �F �  Η τάση του 
νήματος λειτουργεί ως κεντρομόλος δύναμη 
κατά την περιστροφή του σφαιριδίου. Συνε-

πώς, ισχύει: � � �F �   ή  � �F F�   ή   F
m

R

2

2

ή   F m R2

2
  ή, λόγω της σχέσης (1):

 F m R256
0

2

2
   ή   F m

R
256

4
0

2 1

ή   F m R64
0

2

1
  (3).

Με διαίρεση κατά μέλη των σχέσεων (2) και 

(3) έχουμε: F

F�
�

1

64
  ή  F′ = 64F.

16. Α. Σωστή επιλογή είναι η α.
Επειδή η στροφορμή του συστήματος των δύο 
αστροναυτών παραμένει σταθερή, ισχύει:
 

L L��� ����

 ή  m m m m   
0 0

2 2 4 4

     

ή   
0

2


   ή  υ = 2υ0 (1).
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Β. Σωστή επιλογή είναι η α.
Η τάση του νήματος που ασκείται σε κάθε 
αστροναύτη δρα ως κεντρομόλος δύναμη κατά 
την περιστροφή του. Αρχικά ισχύει:

  m
0

2

2



  ή    2
0

2
m


 (2).

Αν το μέτρο της τάσης του νήματος είναι τελι-

κά ίσο με �� , τότε ισχύει:   m2

4



 

ή    4
2

m


  ή, λόγω της σχέσης (1): 

  16
0

2
m


 (3).

Με διαίρεση κατά μέλη των σχέσεων (2) και 

(3) προκύπτει: T





1

8
  ή  T′ = 8T.

17. Σωστή επιλογή είναι η γ.

Έστω   η νέα γωνιακή ταχύτητα του σφαιρι-
δίου (όταν κινείται σε κυκλική τροχιά ακτίνας 

� �R
R

2
). Η στροφορμή του σφαιριδίου διατη-

ρείται σταθερή. Επομένως, είναι:

Lαρχ = Lτελ  ή  m R m R  

ή  � �R R
2 2� ��( )   ή  � �R

R2

2

4
� �

ή  � �� �4 .

Το έργο της δύναμης 


F  υπολογίζεται από τη 
σχέση: W K

F
� ���� ����

ή  W m m
F
� ��1

2

1

2

2 2
( )� �

ή  W m
R

m R
F
� �

�
�

�
�
� �

1

2
4

2

1

2

2

2� �( )

ή  W m RF
3
2

2 2 .ω
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18. α. Είναι: Lαρχ = mυ1r + mυ1r

ή  Lαρχ = 2mω1r
2  ή  Lαρχ = 1 kg · m2/s.

β. Η δύναμη 


Τ  που ασκείται σε κάθε δακτύ-
λιο από το νήμα δρα ως κεντρομόλος δύναμη. 

Ισχύει:   m

r


1

2

 (1), όπου υ1 η γραμμική τα-

χύτητα του κάθε δακτυλίου. Από τη σχέση (1) 

έχουμε:    m r

r


1

2

  ή    m r
1

2

ή  Τ = 10 Ν.

γ. Έστω ω2 το μέτρο της τελικής γωνιακής τα-
χύτητας του συστήματος ράβδος – δακτύλιοι. 
Επειδή η συνολική ροπή των εξωτερικών δυ-
νάμεων που ασκούνται στο σύστημα ράβδος – 
δακτύλιοι ως προς τον άξονα ′z z  είναι ίση με 
μηδέν, η στροφορμή του συστήματος διατη-
ρείται σταθερή. Συνεπώς ισχύει: 

 

L L��� ����   

ή  2 2
2

1

2

2

2

m r m� �� �
�
�

�
�
�
   ή  ω2 = 2,5 rad/s.

δ. Βλέπε: Βασική λυμένη άσκηση 1. 
Είναι: �� � �� ���� ���

ή    2
1

2
2

1

2
2

2

1

2
m m 

ή  �� � �
�
�

�
�
� �

�

�
�
�

�

�
�
�

m r� �
2

2

1

2

2



( )   

ή  ΔΚ = –3,75 J.

19. α. Είναι: υ1 = ω1R1  ή  υ1 = 12 m/s.

β. Το μέτρο της δύναμης 


F
1
 είναι ίσο με το 

μέτρο της τάσης 


T
1
 του νήματος που ασκείται 

στο σφαιρίδιο. Επειδή η τάση του νήματος που 
ασκείται στο σφαιρίδιο δρα ως κεντρομόλος 

δύναμη, ισχύει: F1 = T1  ή  F1 = Fκ

ή  F
m

R
1

1

2

1

    ή  F1 = 108 N.

γ. Επειδή η τάση του νήματος που ασκείται 
στο σφαιρίδιο δεν δημιουργεί ροπή ως προς το 
κέντρο Κ της κυκλικής τροχιάς του, η στρο-
φορμή του σφαιριδίου παραμένει σταθερή. 
Συνεπώς ισχύει: 

 

L L��� ����

ή  mυ1R1 = mυ2R2  ή  mυ1R1 = mυ2(R1 – h)

ή  υ2 = 16 m/s.

Το μέτρο της δύναμης 


F
2
 υπολογίζεται από τη 

σχέση: F2 = T2  ή  F2 = Fκ  ή  F
m

R
2

2

2

2

 

ή  F2 = 256 N.

δ. Είναι: � � ���� ��� ���� �

ή     1

2

1

2
2

2

1

2
m m   ή  Eδαπ = 8,4 J.

20. α. Η αρχική στροφορμή 


L���  του συστή-
ματος των δύο αστροναυτών ως προς τον άξο-
να περιστροφής τους υπολογίζεται από τη σχέ-

ση: L m  2
2

1

   ή  Lαρχ = 3.200 kg · m2/s.

β. Έστω 


Τ  η δύναμη που ασκείται σε κάθε 
αστροναύτη από το σχοινί. Η δύναμη 



Τ  δρα 
ως κεντρομόλος δύναμη. Συνεπώς, ισχύει:

Τ = Fκ  ή    m


1

2

2



  ή  Τ = 500 Ν.

γ. Έστω υ2 το μέτρο της νέας γραμμικής τα-
χύτητας των αστροναυτών. Η στροφορμή του 
συστήματος των αστροναυτών διατηρείται 
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σταθερή, οπότε ισχύει: Lαρχ = Lτελ

ή  2
2

2
4

1 2
m m 

 

ή  υ2 = 2υ1  ή  υ2 = 10 m/s.

Έστω ω το μέτρο της νέας γωνιακής ταχύτη-
τας περιστροφής των αστροναυτών. Είναι:

 
2

4
    ή  ω = 5 rad/s.

δ. Έστω ��  το μέτρο της νέας δύναμης που 
ασκεί το νήμα σε κάθε αστροναύτη. Ισχύει:

� �� F�   ή    m
2

2

4



  ή  � �� �4 000. .

Επομένως, είναι:     

ή  ΔΤ = +3.500 Ν.

ε. Η ενέργεια που δαπάνησαν οι αστροναύτες 
για να μειώσουν τη μεταξύ τους απόσταση στο 
μισό της αρχικής της τιμής υπολογίζεται από 
τη σχέση: � � ������ ��� ���� �   

ή     2
1

2
2

1

2
2

2

1

2
m m   

ή     m( )
2

2

1

2   ή  Εδαπαν = 6.000 J.

21. α. Επειδή ο δίσκος ισορροπεί, ισχύει:

ΣF = 0  ή  � �� �
1

g.

Είναι: � �1 1� �   ή  Τ1 = Μg.

Έστω υ1 το μέτρο της γραμμικής ταχύτητας 
του σφαιριδίου. Η δύναμη 



Τ1  που ασκείται 
στο σφαιρίδιο από το νήμα λειτουργεί ως κε-
ντρομόλος δύναμη. Επομένως, είναι: Τ1 = Fκ 

ή  g
m

R
 

1

2

1

  ή  
1

1 gR

m

ή  υ1 = 10 m/s.

υ
1

w

Τ
1

Τ
1

Ο

A

Δ

m

R
1



Το μέτρο της αρχικής στροφορμής 


L
1
 του 

σφαιριδίου υπολογίζεται από τη σχέση: 
L1 = mυ1R  ή  L1 = 2 kg · m2/s. 

β. Η ακτίνα R2 της νέας κυκλικής τροχιάς 
του σφαιριδίου είναι ίση με:  R R h

2 1
� �  

ή  R2 = 0,5 m.

Έστω υ2 το μέτρο της νέας ταχύτητας του 
σφαιριδίου. Η στροφορμή του σφαιριδίου δια­
τηρείται σταθερή. Επομένως, ισχύει:

Lαρχ = Lτελ  ή  mυ1R1 = mυ2R2  ή   
2

1 1

2

 R

R
 

ή  υ2 = 20 m/s.

γ. Το ζητούμενο ποσοστό υπολογίζεται από τη 

σχέση: �
���

� �
��
�

100%

ή  
 







1

2

1

2

1

2

100
2

2

1

2

1

2

m m

m

%   ή  π = 300%.

δ. Η δύναμη 


Τ2  που ασκείται στο σφαιρίδιο 
από το νήμα δρα ως κεντρομόλος δύναμη:

Τ2 = Fκ  ή  
2

2

2

2

 m

R

   ή  Τ2 = 160 Ν.

Επειδή το σύστημα δίσκος – σώμα Σ1 ισορρο-
πεί, ισχύει: ΣF = 0  ή  � � �� �

2 1
( )m g

ή, επειδή Τ′2 = Τ2, 
T2 = (M+m1)g  ή  m1 = 14 kg.
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22. α. Έστω 


Τ  η δύναμη που ασκείται σε 
κάθε δακτύλιο από το νήμα. Η δύναμη 



Τ  
λειτουργεί ως κεντρομόλος δύναμη για κάθε 
δακτύλιο.

Τ Τ
Α Γ

F

z

z

m m

r r

M

Έστω υ1 το μέτρο της γραμμικής ταχύτητας 
των δακτυλίων τη χρονική στιγμή t1. Τη χρο-

νική στιγμή t1 ισχύει: Τθρ = Fκ  ή  
 m

r

1

2

  

ή  υ1 = 40 m/s.

Το μέτρο της γωνιακής ταχύτητας ω1  του συ-
στήματος ράβδος – δακτύλιοι τη χρονική στιγ-
μή t1 υπολογίζεται από τη σχέση:
υ1 = ω1r  ή  ω1 = 20 rad/s.

β. Έστω L το μέτρο της στροφορμής του συ-
στήματος των δύο δακτυλίων ως προς τον άξο-
να ′z z  τη χρονική στιγμή t1. Είναι:

L = L1 + L2  ή  L = 2mυ1r  ή  L = 32 kg · m2/s. 

γ. Οι εξωτερικές δυνάμεις που ασκούνται στο 
σύστημα ράβδος – δακτύλιοι είναι: τα βάρη 
των δύο δακτυλίων, η δύναμη από τον άξονα 
περιστροφής και η δύναμη 



F.  Από αυτές ροπή 
ως προς τον άξονα ′z z  δημιουργεί μόνο η δύ-

ναμη 


F.  Η ροπή της δύναμης 


F  είναι σταθερή 
ως προς τον άξονα ′z z,  οπότε ο ρυθμός με-
ταβολής της στροφορμής του συστήματος ρά-
βδος – δακτύλιοι διατηρείται σταθερός. Είναι:

dL

dt



����
���� �  ή, αλγεβρικά: dL

dt

����
���� �  

ή  dL

dt
F

���� �


2
  ή  �

�
L

t
F

���� �


2

ή   L

t
F

���� �
�

�
0

0 2
1

   ή  F
L

t
�

2

1

����



 (1).

Επειδή η ράβδος είναι αβαρής, η στροφορμή 
του συστήματος ράβδος – δακτύλιοι ως προς 
τον άξονα ′z z  τη χρονική στιγμή t1 είναι ίση 
με τη στροφορμή του συστήματος των δύο δα-
κτυλίων. Συνεπώς, από τη σχέση (1) έχουμε: 

F
L

t
=

2

1


  ή  F = 2 N.

δ. Έστω ω2 το μέτρο της τελικής γωνιακής τα-
χύτητας του συστήματος ράβδος – δακτύλιοι. 
Η στροφορμή του συστήματος διατηρείται 
σταθερή. Συνεπώς, ισχύει:

Lαρχ = Lτελ  ή  L m  2
2

2



ή  L m��� �� �
�
�

�
�
�2

2
2

2

   ή  L m��� ��
1

2
2

2


 ή  � ���
2 2

2
�

L

m
  ή  �

2 2

2
�

L

m
  ή  ω2 = 5 rad/s.

23. α. Η ενέργεια που δαπανήσαμε για να 
μεταβάλουμε την ακτίνα περιστροφής του 
σφαιριδίου από R1 σε R2 ισούται με το έργο 
της δύναμης που ασκούμε στο ελεύθερο άκρο 
Α του νήματος. 
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Είναι: W K
F
� ���� ����  

ή  W m m
F
 1

2

1

2
2

2

1

2    

ή  W m
F
� �

1

2
2

2

1

2
( )� �  (1), όπου υ2 το μέτρο 

της τελικής γραμμικής ταχύτητας του σφαιρι-
δίου. Η στροφορμή του σφαιριδίου διατηρεί-
ται σταθερή, οπότε ισχύει: Lαρχ = Lτελ 

ή  mυ1R1 = mυ2R2  ή   
2

1

2

1
 R

R
 (2).

Από τη σχέση (1), λόγω της σχέσης (2), προ-

κύπτει: W m
R

R
F





















1

2
1

1

2 1

2

2

   

ή  υ1 = 10 m/s.

β. Από τη σχέση (2) προκύπτει: υ2 = 20 m/s.

γ. Επειδή το νήμα είναι αβαρές, το μέτρο της 
δύναμης 



F
1
 ισούται με το μέτρο της δύναμης 



Τ1  που ασκείται στο σφαιρίδιο από το νήμα 
(F1 = T1). Η δύναμη 



Τ1  λειτουργεί ως κεντρο-
μόλος δύναμη στο σφαιρίδιο. Συνεπώς, ισχύει:

Τ1 = Fκ  ή  
1

1

2

1

 m

R

   ή  F
m

R
1

1

2

1

 

ή  F1 = 50 N.

F1

υ1

Ο

A

R1

Ο

F2

υ2

A

R2

Τ′2

Τ2

Τ′1

Τ1

F1

υ1

Ο

A

R1

Ο

F2

υ2

A

R2

Τ′2

Τ2

Τ′1

Τ1

δ. Το μέτρο της δύναμης 


F
2
 είναι ίσο με το 

μέτρο της δύναμης 


Τ2  που ασκείται στο σφαι-

ρίδιο από το νήμα. Είναι: Τ2 = Fκ  ή  
2

2

2

2

 m

R

  

ή  F
m

R
2

2

2

2

    ή  F2 = 400 N.

24. α. Είναι: L m  2
2

1



ή  Lαρχ = 2.400 kg · m2/s. 

β. Είναι: 
1

1

2

2

 m


  ή  Τ1 = 375 Ν.

γ. Η απόσταση μεταξύ των αστροναυτών γίνε-

ται: � � �  

50

100
  ή  � �



2
.

Έστω υ2 το μέτρο της νέας γωνιακής ταχύτητας 
με την οποία περιστρέφονται οι αστροναύτες. 
Επειδή η στροφορμή του συστήματος των δύο 
αστροναυτών διατηρείται σταθερή, ισχύει:

Lαρχ = Lτελ  ή  2
2

2
4

1 2
m m 

    ή  υ2 = 10 m/s.

Το μέτρο ω2 της νέας γωνιακής ταχύτητας του 
συστήματος των αστροναυτών υπολογίζεται 

από τη σχέση:  
2 2

4
    ή  ω2 = 5 rad/s.
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Έστω Δθ η γωνία στροφής των αστροναυτών 
σε χρονικό διάστημα Δt = 10 s. Είναι:

Δθ = ω2Δt  ή  Δθ = 50 rad.

Επομένως, είναι: � �
�

�

�2
  ή  Ν = (25/π) πε-

ριστροφές.

δ. Η ενέργεια που δαπάνησαν οι δύο αστρο-
ναύτες για να μειώσουν τη μεταξύ τους από-
σταση κατά 50% υπολογίζεται από τη σχέση:

� � ������ ��� ���� �

ή     2
1

2
2

1

2
2

2

1

2
m m  

ή     m( )
2

2

1

2   ή  Εδαπαν = 4.500 J.

ε. Είναι: Τθρ = Fκ  ή  
 m

3

2

2



min

 ή  
 2

3

2
m



min

 (1). 

Επειδή η στροφορμή του συστήματος δια­
τηρείται σταθερή, ισχύει: Lαρχ = Lτελ

ή  2
2

2
2

1 3
m m 

  min   ή   
3 1
 



min

 (2).

Από τη σχέση (1), λόγω της σχέσης (2), έχου-

με:




2

2

2 1

2
m






min

min

  ή  
 2

2

1

2

3

m



min

ή   

min
 2

2

1

2

3

m

T





  ή  ��min .�� 2 m

25. α. Οι εξωτερικές δυνάμεις που ασκούνται 
στο σύστημα είναι: τα βάρη w

1
 και w

2
 των 

σωμάτων Σ1 και Σ2 αντίστοιχα και η δύναμη 


F��  από τον άξονα περιστροφής της ράβδου. 

Η δύναμη 


F��  δεν δημιουργεί ροπή ως προς 
τον άξονα περιστροφής ′x x  της ράβδου. 

w1 w2

A Γ
Σ1 Σ2M
Α

Το μέτρο του ρυθμού μεταβολής της στρο-
φορμής του συστήματος τη χρονική στιγμή 
t = 0 στην οποία αφήνεται ελεύθερο να κινηθεί 

υπολογίζεται από τη σχέση: dL

dt

����
���� �

ή  dL

dt
w w

���� � �
1 2

2 2

   

ή  dL

dt
m g m g

���� � �
1 2

2 2

 

ή   dL
dt

kg m s5 2 2/ .συστ

β. Έστω ω1 το μέτρο της γωνιακής ταχύτητας 
του συστήματος ράβδος – σημειακά σώματα 
τη χρονική στιγμή t1. Τα μέτρα υ1 και υ2 των 
γραμμικών ταχυτήτων των σωμάτων Σ1 και Σ2 
αντίστοιχα τη χρονική στιγμή t1 δίνονται από 

τις σχέσεις: � �
1 1

2
�

  (1) και � �2 2
�

  (2).

υ
2

A

A

Γ

Γ

t = 0Σ
1

Σ
1

Σ
2

Σ
2

M
Α

Α

υ
1

Θέση Ι

Θέση ΙΙ

t
1

βαρU 0=
βαρU 0=



2. 6  Διατήρηση της Στροφορµής

237

Από την Αρχή Διατήρησης της Μηχανικής 
Ενέργειας για την κίνηση του συστήματος από 
την αρχική του θέση (Θέση Ι) στην τελική του 
θέση (Θέση ΙΙ), θεωρώντας ως επίπεδο μηδε-
νικής βαρυτικής δυναμικής ενέργειας το ορι-
ζόντιο επίπεδο που διέρχεται από το κατώτερο 
σημείο της κυκλικής τροχιάς που διαγράφει το 
σώμα Σ1, έχουμε: Εμηχ(αρχ) = Εμηχ(τελ)

ή  Καρχ + Uαρχ = Κτελ + Uτελ 

ή  0
2 2

1

2
1 2 1 1

2  m g m g m
 

   

                                    1

2
2 2

2

2
m m g 

ή  1

2

1

2

1

2 2
1 2 1 1

2

m g m g m 



� � �
�
�

�
�
��  

                                 � �
�
�

�
�
� �

1

2 2
2 1

2

2
m m g�





ή  1

2

1

2

1

8

1

8
1 2 1 1

2 2

2 1

2 2
m g m g m m   � � �� �

ή  �
1

1 2

1 2

4
�

�
�

( )

( )

m m g

m m 

  ή  ω1 = 2 rad/s.

Από τη σχέση (1) προκύπτει: υ1 = 2 m/s.

γ. Η στροφορμή 


L  του συστήματος των ση-
μειακών σωμάτων Σ1 και Σ2 ως προς τον άξονα 
′x x  τη χρονική στιγμή t1 δίνεται από τη σχέση:
  

L L L� �
1 2

 (3), όπου 


L
1
 και 



L
2
 οι στροφορ-

μές των σημειακών σωμάτων Σ1 και Σ2 ως 
προς τον άξονα x′x τη χρονική στιγμή t1.

Επειδή οι στροφορμές 


L
1
 και 



L
2
 έχουν τη διεύ­

θυνση του άξονα ′x x  και φορά από τη σελίδα 
προς τον αναγνώστη, η σχέση (3) γράφεται:

L = L1 + L2  ή  L m m 
1 1 2 2

2 2
 
 

ή  L m m� �
�
�

�
�
� � �

�
�

�
�
�1 1

2

2 1

2

2 2
� �

 

 ή  L m m� �
1

4
1 2 1

2
( )�    ή   L = 5 kg · m2/s. 

δ. Έστω ω2 το μέτρο της νέας γωνιακής τα-
χύτητας του συστήματος ράβδος – σημειακά 
σώματα αμέσως μετά την πλαστική κρούση 
του σώματος Σ1 με το σώμα Σ3.

Σ1 Σ1 + Σ3
 Σ3

Σ2
Σ2

Α

M M

Α

ΓΓ

ω
1

ω
2

υ2

υ1

Aκριβώς πριν

από την κρούση

Αμέσως μετά

την κρούση

Θέση ΙΙ

Θεωρούμε το σύστημα που αποτελείται από το 
σώμα Σ3 και το ενιαίο σώμα που δημιουργούν 
η ράβδος μαζί με τα σημειακά σώματα Σ1 και 
Σ2. Η στροφορμή του συστήματος αυτού δια-
τηρείται σταθερή κατά τη διάρκεια της κρού-
σης. Επειδή η ράβδος είναι αβαρής, δεν έχει 
στροφορμή. Επομένως, είναι: 

 

L L
¬���� ���� μετά

ή  1

4 2 2
1 2 1

2

1 3 1 2 2
( ) ( )m m m m m      

    

ή  1

4 2
1 2 1

2

1 3 2

2

( ) ( )m m m m� � � �
�
�

�
�
�� �

  

                                  �
�
�
�

�
�
�m

2 2

2

2
�



  

ή  1

4

1

4
1 2 1

2

1 2 3 2

2
( ) ( )m m m m m� � � �� � 

ή  � �
2

1 2

1 2 3

1
�

�
� �
m m

m m m
  ή  ω2 = 1,25 rad/s.
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Το μέτρο της γραμμικής ταχύτητας 2  του ση-
μειακού σώματος Σ2 αμέσως μετά την κρούση 

υπολογίζεται από τη σχέση:   2 2 2


ή  υ′2 = 1,25 m/s.

ε. Το ζητούμενο ποσοστό υπολογίζεται από τη 

σχέση:     

 





 


( ) ( )

( )

%
¬

100
(μετά)   ή


   




   







 
1

2

1

2

1

2

1

2

1

2

1

2

1 1

2

2 2

2

1 3 1

2

2 2

2

1 1

2

2

m m m m m

m m

( )


2

2

100 %

ή  �
� �

� �

� �
� �

�
�

�
�
� � �

�
�

�
�
�

�
�
�

�
�
� � �

�

1
2 2

2 2

1 3 2

2

2 2

2

1 1

2

2 1

( )m m m

m m

 

 

��
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�
2

100%

ή  � �

�
� �

� �
�

�

�
�

�

�
� �1 100

1 2 3 2

2

1 2 1

2

( )

( )
%

m m m

m m

ή  π = 37,5%.

26. α. Είναι: � �
0
�
�
�t

  ή  � �
0

1

�
�
t

ή  ω0 = 10 rad/s.

β. Η στροφορμή 


L���  του συστήματος των 
σημειακών σωμάτων Σ1 και Σ2 ακριβώς 
πριν από την κρούση δίνεται από τη σχέση: 
  

L L L��� � �
1 2

 (1), όπου 


L
1
 και 



L
2
 οι στρο-

φορμές των σημειακών σωμάτων Σ1 και Σ2 
αντίστοιχα ακριβώς πριν από την κρούση. Τα 
διανύσματα 



L
1
 και 



L
2
 έχουν φορά από τη σε-

λίδα προς τον αναγνώστη, οπότε η σχέση (1) 
γράφεται: Lαρχ = L1 +L2 

ή  L m m   
1 1 2 2

2 2

    

ή  L m m��� � �� �
�
�

�
�
� � �

�
�

�
�
�1 0

2

2 0

2

2 2

 

ή  L m m��� �� �
1

4
1 2 0

2
( ) 

 ή  Lαρχ = 120 kg · m2/s.

γ. Έστω υ3 το μέτρο της ταχύτητας του σημεια­
κού σώματος Σ3 αμέσως μετά την κρούση. Η 
στροφορμή του συστήματος του σημειακού 
σώματος Σ3 και του ενιαίου σώματος που δημι-
ουργούν η ράβδος και τα σημειακά σώματα Σ1 
και Σ2 διατηρείται σταθερή κατά τη διάρκεια 
της κρούσης ως προς τον άξονα ′z z.  Επειδή 
η ράβδος είναι αβαρής, δεν έχει στροφορμή. 
Συνεπώς, ισχύει:
 

L L��� ����   ή  Lαρχ = L3  ή  L m 
3 3

2



ή  υ3 = 20 m/s.

δ. Τα μέτρα των ταχυτήτων υ1  και υ2  των 
σημειακών σωμάτων Σ1 και Σ2 αντίστοιχα 
ακριβώς πριν από την κρούση υπολογίζονται 

από τις σχέσεις:  
1 0

2
    ή  υ1 = 20 m/s και 

 
2 0

2
    ή  υ2 = 20 m/s.

Είναι:    
( )

 1

2

1

2
1 1

2

2 2

2
m m

ή  Κολ(πριν) = 600 J  και  Κολ(μετά) 
1

2
3 3

2
m 

ή  Κολ(μετά) = 600 J.

Επειδή ισχύει Κολ(πριν) = Κολ(μετά), η κρούση εί-
ναι ελαστική.

ε. Το σημειακό σώμα Σ3 μετά την κρούση 
εκτελεί ομαλή κυκλική κίνηση με κέντρο το 

σημείο Μ και ακτίνα d =


2
.  Έστω ω το μέτρο 

της γωνιακής ταχύτητας του σημειακού σώμα-
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τος Σ3 μετά την κρούση. Ισχύει: 

 
3

2
    ή ω = 10 rad/s.

Η γωνία που διαγράφει η επιβατική ακτίνα του 
σημειακού σώματος Σ3 από τη χρονική στιγμή 
t1 αμέσως μετά την κρούση μέχρι τη χρονική 
στιγμή t2 στην οποία συγκρούεται με το σώμα 
Σ2, είναι � � �� � rad.  Έχουμε:

� �� �� � t   ή  � � � �� �( )t t
2 1

ή  t t
2 1
� �

���
�

  ή  t2 = 0,15π s.

27. α. Είναι: �� �����
1

2
1

2
t

ή  αγων = (100/π) rad/s2.

β. Έστω ω1 το μέτρο της γωνιακής ταχύτητας 
του συστήματος της ράβδου και των σημεια-
κών σωμάτων Σ1 και Σ2 ακριβώς πριν από την 
κρούση. Είναι: ω1 = αγωνt1  ή  ω1 = 10 rad/s.

Τα μέτρα υ1 και υ2 των ταχυτήτων των σημεια­
κών σωμάτων Σ1 και Σ2 αντίστοιχα ακριβώς 
πριν από την κρούση υπολογίζονται από τις 

σχέσεις:  
1 1

2
    ή  υ1 = 5 m/s και  

2 1
2

 

ή  υ2 = 5 m/s.

Η στροφορμή 


L����  του συστήματος των ση-
μειακών σωμάτων Σ1 και Σ2 ως προς τον άξονα 
′z z  ακριβώς πριν από την κρούση δίνεται από 

τη σχέση: 
  

L L L���� � �
1 2

 (1), όπου 


L
1
 και 



L
2
 

είναι οι στροφορμές των σημειακών σωμάτων 
Σ1 και Σ2 αντίστοιχα ως προς τον άξονα ′z z  
ακριβώς πριν από την κρούση. Επειδή οι στρο-
φορμές 



L
1
 και 



L
2
 έχουν την ίδια φορά (από 

τη σελίδα προς τον αναγνώστη), η σχέση (1) 
γράφεται:  Lπριν = L1 + L2

ή  L m m   
1 2

2 2

 

ή  Lπριν = 5 kg · m2/s.

γ. Η ράβδος είναι αβαρής, οπότε δεν έχει 
στροφορμή ως προς τον άξονα ′z z.  Ο ρυθμός 
μεταβολής της στροφορμής του συστήματος 
της ράβδου ΑΓ και των υλικών σημείων Σ1 και 
Σ2 ως προς τον άξονα ′z z  είναι σταθερός και 
δίνεται από τη σχέση:
dL

dt



����
���� �  ή, αλγεβρικά:

dL

dt

����
���� �   ή  �

�
L

t
F

���� ��

ή  
L

t
F

���� � �
0

2
1

   ή  F
L

t
�

2

1

����



ή  F N100 .
π

δ. Έστω ω2 το μέτρο της γωνιακής ταχύτητας 
του συστήματος αμέσως μετά την κρούση. 

Ισχύει: 
 

L L��� ����   ή  
    

L L L L L
1 2 1 2 3
� � � � � � �   

ή  m m m m m    
1 2 1 2

2 2 2 2 2

         

ή  m m� �
1

2

1

2

2 2

 �
�
�

�
�
� � �

�
�

�
�
�   

    
� �

�
�

�
�
� � �

�
�

�
�
� � � �

�
�

�
�
�m m m� � �

2

2

2

2

2

2

2 2 2

  

ή  2 2
1 2

m m m� �� � �( )   ή  ω2 = 5 rad/s.

Το μέτρο της ταχύτητας του σώματος Σ2 αμέ-

σως μετά την κρούση είναι:   2 2 2


ή  υ′2 = 2,5 m/s. 
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ε. Είναι: � � ����� �� ���� �� ���� �
( ) ( )¬(μετά)

ή     1

2

1

2
1

2

2

2
m m    

                    





 
1

2

1

2

1

2
1

2

2

2 2
m m m  

ή  ����� � �� �
�
�

�
�
� � �

�
�

�
�
�

1

2 2

1

2 2
1

2

1

2

m m
 

 
� �

�
�

�
�
� � �

�
�

�
�
� � ��

�
�

�
�
�

�

�
�
�

�

�
�
�

1

2 2

1

2 2

1

2 2
2

2

2

2

2

2

m m m� � �
  

ή  ����� � �� � � �1

4

1

8
2

1

2 2

2

2 2
m m m ( )

ή  Εαπωλ = 12,5 J.

28. α. Οι εξωτερικές δυνάμεις που ασκούνται 
στο σύστημα της ράβδου ΑΓ και των σημεια­
κών σωμάτων Σ1 και Σ2 είναι: τα βάρη w

1
 και 



w
2
 των σωμάτων Σ1 και Σ2 αντίστοιχα και η 

δύναμη 


F��  από τον άξονα περιστροφής, η 
οποία δεν δημιουργεί ροπή ως προς τον άξονα 
περιστροφής ′x x.  

A Γ

Σ
1

Σ
3

Σ
2

Οt = 0

2  /3�

2  /3�

  /3�

w
1

w
2

F
αξ

+

Τη χρονική στιγμή t = 0 στην οποία αφήνουμε 
το σύστημα ελεύθερο να κινηθεί, ισχύει:

dL

dt



����
���� �  ή, αλγεβρικά: 

dL

dt
w w

���� � �� �
1 2

  

ή  dL

dt
m g m g

���� � �
1 2

2

3 3

 

ή  
dL
dt

kg m sσυστ = ⋅50 2 2/ .

β. Εφαρμόζουμε την Α.Δ.Μ.Ε. για την κίνηση 
του συστήματος ράβδος – σημειακά σώματα 
Σ1 και Σ2 μεταξύ των θέσεων (Ι) και (ΙΙ) που 
φαίνονται στο ακόλουθο σχήμα, θεωρώντας ως 
επίπεδο μηδενικής βαρυτικής δυναμικής ενέρ-
γειας το οριζόντιο επίπεδο που διέρχεται από 
το άκρο Α της ράβδου ΑΓ, όταν αυτή βρίσκεται 
στη θέση (ΙΙ).

υ
1

υ
2

A

A

Γ

Γ

Σ
1

Σ
1

Σ
2

Σ
2

Ο
Θέση Ι

Θέση ΙΙ

2  /3�

  /3�

βαρU 0
βαρU 0

Είναι: Εμηχ(αρχ) = Εμηχ(τελ)  

ή  Καρχ + Uαρχ = Κτελ + Uτελ  

ή  0
2

3

2

3

1

2
1 2 1 1

2  m g m g m
 

  

                                        1

2
2 2

2

2
m m g 

 (1),

όπου υ1 και υ2 τα μέτρα των γραμμικών ταχυ-
τήτων των σωμάτων Σ1 και Σ2 αντίστοιχα στη 
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θέση (ΙΙ). Έστω ω1 το μέτρο της γωνιακής τα-
χύτητας του συστήματος στη θέση ΙΙ. Είναι: 

 
1 1

2

3
   (2) και  

2 1
3

   (3).

Η σχέση (1), λόγω των σχέσεων (2) και (3) 
γράφεται:  

m g m g m
1 2 1 1

2

2
2

3

2

3

1

2

4

9

  

� � �  

                              � �
1

2 9
2 1

2

2

2
m m g�





ή  1

3
2

1

18
4 1

1 2 1 2 1

2
( )m m g m m��

��
�
��

� �� �� 

ή  ω1 = 2 rad/s.

Από τη σχέση (1) προκύπτει: 1
20
3

m s/ .υ 

γ. Από τη σχέση (2) προκύπτει: 
2

10

3
 m s/ .

Η στροφορμή 


L����  του συστήματος των ση-
μειακών σημείων Σ1 και Σ2 ακριβώς πριν από 
την κρούση δίνεται από τη σχέση:
  

L L L���� � �
1 2

 ή, αλγεβρικά:

Lπριν = L1 + L2  ή  L m m   
1 1 2 2

2

3 3

 

ή  Lπριν = 50 kg · m2/s.

δ. Έστω 1  και 2  τα μέτρα των ταχυτήτων 
των σημειακών σωμάτων Σ1 και Σ2 αντίστοιχα 

αμέσως μετά την κρούση. Είναι:   
1 2

2

3



ή   
1

20

3
m s/   και    

2 2
3



ή   
2

10

3
m s/ .

Έστω υ3 το μέτρο της ταχύτητας του σημεια-
κού σώματος Σ3 αμέσως μετά την κρούση.

Σ
1 Σ

3

Σ
2

Σ
2

O O

υ
2

υ
1 Σ

1
Σ

3

υ
2

υ
1

υ
3

2  /3�

  /3�

+

Aκριβώς πριν

από την κρούση

Αμέσως μετά

την κρούση

Η στροφορμή του συστήματος που αποτε-
λείται από το σημειακό σώμα Σ3 και το ενι-
αίο σώμα που δημιουργούν η ράβδος ΑΓ μαζί 
με τα σημειακά σώματα Σ1 και Σ2 διατηρείται 
σταθερή κατά την κρούση. Επειδή η ράβδος 
είναι αβαρής, δεν έχει στροφορμή, οπότε από 
την αρχή διατήρησης της στροφορμής κατά 
την κρούση έχουμε:
 

L L���� ����� ΄   ή, αλγεβρικά: Lπριν = Lμετά

ή  L m m m       
1 1 2 2 3 3

2

3 3

2

3

  

ή  υ3 = 10 m/s.

ε. Έστω ∆


L
1 2,

 η μεταβολή της στροφορμής 
του συστήματος των σημειακών σωμάτων Σ1 
και Σ2 ως προς τον άξονα ′x x  κατά την κρού-
ση. Είναι: �

  

L L L
1 2,
� ���� ���  ή, αλγεβρικά:

L m m m m
1 2 1 1 2 2 1 1 2 2

2

3 3

2

3 3
,
    





    
     

ή  ΔL1,2 = –100 kg · m2/s.
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Έστω ∆


L
3
 η μεταβολή της στροφορμής του 

σημειακού σώματος Σ3 ως προς τον άξονα ′x x  
κατά την κρούση. Είναι: �

  

L L L
3
� ���� ���

ή, αλγεβρικά: �L m
3 3 3

2

3
0� ��



ή  ΔL3 = +100 kg · m2/s.
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Κρούσεις

1. α. Έχουμε:   


 
1

1 2

1 2

1

m m

m m
  ή    


5 10

1 2

1 2

m m

m m
  ή  m

m
1

2

1
3

== .

β. Έχουμε:  


 
2

1

1 2

1

2m

m m
 (1)  ή   

2
5 m/s.

Από το Θ.Μ.Κ.Ε. για την κίνηση του σώματος Σ2 μετά την κρούση έχουμε:

K K W W W
T w N��� ���� � � �

2 2 2

  ή  0
1

2
0 0

2 2

2

2 2
    m m gs    ή  s2 = 6,25 m.

γ. Από την Α.Δ.Μ.Ε. για την κίνηση του σώματος Σ1 μετά την κρούση, θεωρώντας ως επίπεδο 
μηδενικής βαρυτικής δυναμικής ενέργειας το οριζόντιο δάπεδο, έχουμε:

E E��� ���� �� � � ��   ή  1

2
1 1

2

1
m m g     ή  ��  1 25, .

δ. Από την Α.Δ.Μ.Ε. για την κίνηση του σώματος Σ1 πριν από την κρούση, θεωρώντας ως επί-
πεδο μηδενικής βαρυτικής δυναμικής ενέργειας το οριζόντιο επίπεδο, έχουμε: E E��� ���� �� � � ��

ή  1

2

1

2
0

1 0

2

1 1 1

2
m m g m      ή  5 3 m/s.υ0

Το ζητούμενο ποσοστό προκύπτει: 



 


1

2

1

2

100
2 2

2

1 0

2

m

m

%   ή  π = 100%.

ε. Με βάση τη μεθοδολογία που γνωρίζουμε, το ζητούμενο ποσοστό υπολογίζεται από τη σχέση: 

� �
�� �

��
4

100
1 2

1 2

2

m m

m m

%   ή  π = 75%.

2. α. Από το Θ.Μ.Κ.Ε. για την κίνηση του σώματος Σ1 πριν από την κρούση έχουμε:

K K W W W
T w N��� ���� � � �

1 1 1

  ή  1

2

1

2
0 0

1 1

2

1 0

2

1 1
m m m gd         ή  υ1 = 8 m/s.

β. Έστω υ το μέτρο της ταχύτητας του συσσωματώματος αμέσως μετά την κρούση. Από το 
Θ.Μ.Κ.Ε. για την κίνηση του συσσωματώματος μετά την κρούση έχουμε:

K K W W W
T w N��� ���� � � �   ή  0

1

2
0 0

1 2

2

2 1 2
        m m m m gs    ή  υ = 2 m/s.

Από την Α.Δ.Ο. για το σύστημα των δύο σωμάτων κατά την κρούση, θεωρώντας ως θετική 
φορά τη φορά της ταχύτητας υ

1
, έχουμε: 

 

p p   ( ) ( )
 ΄   ή  m m m m

1 1 2 2 1 2
        ή  

υ2 = 1 m/s.

Θέµατα Επανάληψης
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Το ζητούμενο ποσό θερμότητας είναι: QK = Kολ(πριν) – Κολ(μετά) 

ή  Q m m m m     1

2

1

2

1

2
1 1

2

2 2

2

1 2

2     ή  QK = 27 J.

γ. Ισχύει: �  

p p p
2 2 2
� �� � � ����� ����΄   ή  p m m

2 2 2 2
       ή  Δp2 = m2(υ + υ2)  ή  �p

2
� � �6 kg m/s

ή  p2 6 kg m/s.Δ

δ. Ισχύει: dK

dt
F     ή  dK

dt
T     ή  dK

dt
m m g     

2 1 2
  ή  dK

dt
gp� ��

2
 

 ή  dK
dt

�� ��3 J/s.

3. α. Έχουμε:   


 
1

1 2

1 2

1

m m

m m
  ή  υ′1 = –2 m/s  και   


 

2

1

1 2

1

2m

m m
  ή  υ′2 = +8 m/s.

β. Ο συντελεστής τριβής ολίσθησης μ1 μεταξύ του σώματος Σ1 και του οριζόντιου δαπέδου 
υπολογίζεται από το Θ.Μ.Κ.Ε. για την κίνηση που εκτελεί το σώμα Σ1 από τη χρονική στιγμή 
t = 0 αμέσως μετά την κρούση μέχρι τη χρονική στιγμή στην οποία ακινητοποιείται.

Έχουμε: K K W W W
T w N��� ���� � � �

1 1 1

  ή  0
1

2
0 0

1 1

2

1 1 1
    m m gs    ή  μ1 = 0,1.

γ. Έστω υ το μέτρο της ταχύτητας του σώματος Σ2 ακριβώς πριν από την κρούση του με το 
σώμα Σ3. Από το Θ.Μ.Κ.Ε. για την κίνηση του σώματος Σ2 από τη χρονική στιγμή t = 0 αμέσως 
μετά την κρούση με το σώμα Σ1 έως τη χρονική στιγμή ακριβώς πριν από την κρούση με το 

σώμα Σ3, έχουμε: K K W W W
T w N��� ���� � � �

2 2 2

  ή  1

2

1

2
0 0

2

2

2 2

2

2 2
m m m gd      

ή  υ = 4 m/s.

Έστω υΣ το μέτρο της ταχύτητας του συσσωματώματος. Από την Α.Δ.Ο. κατά την κρούση του 
σώματος Σ2 με το σώμα Σ3 έχουμε: 

 

p p�� ���� �� ����( ) ( )
� ΄   ή  m2υ = (m2 + m3)υΣ  ή  υΣ = 3 m/s.

δ. Έστω α1 το μέτρο της επιβράδυνσης με την οποία κινείται το σώμα Σ1 μετά την κρούση του 
με το σώμα Σ2. Έχουμε: ΣFx = m1α1  ή  Τ1 = m1α1  ή  μ1m1g = m1α1  ή  α1 = 1 m/s2.
Έστω t1 η χρονική στιγμή στην οποία ακινητοποιείται το σώμα Σ1 μετά την κρούση του με το 
σώμα Σ2. Έχουμε: 0

1 1 1
   t   ή  t1 = 2 s.

Έστω α2 το μέτρο της επιβράδυνσης με την οποία κινείται το σώμα Σ2 μετά την κρούση του 
με το σώμα Σ1 και πριν από την κρούση του με το σώμα Σ3. Έχουμε: ΣFx = m2α2  ή  Τ2 = m2α2 
ή  μ2m2g = m2α2  ή  α2 = 3 m/s.2

Έστω t2 η χρονική στιγμή στην οποία το σώμα Σ2 συγκρούεται με το σώμα Σ3. Έχουμε: 

   
2 2 2

t   ή  t
2

4

3
= s.
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Έστω t3 η χρονική στιγμή στην οποία ακινητοποιείται το συσσωμάτωμα που δημιουργείται μετά 
την κρούση του σώματος Σ2 με το σώμα Σ3. Σύμφωνα με την εκφώνηση, ισχύει: t3 = t1 = 2 s.

Έστω αΣ το μέτρο της επιβράδυνσης με την οποία κινείται το συσσωμάτωμα μετά την κρούση. 
Έχουμε: 0

3 2
      t t   ή  αΣ = 4,5 m/s2.

Το διάστημα s2 που διανύει το συσσωμάτωμα μέχρι να ακινητοποιηθεί υπολογίζεται από τη 

σχέση: s t t t t
2 3 2

2

3 2

21

2
          ή  s2 = 1 m.

ε. Έχουμε: Q E E�� ��� ���� �   ή  Q m  1

2
0

1 1

2   ή  Qολ = 100 J.

4. α. Επειδή το δάπεδο είναι λείο, τη χρονική στιγμή t1 στην οποία συγκρούονται τα σώματα Σ1 
και Σ2 οι ταχύτητες τους είναι υ1  και υ2  αντίστοιχα. Έστω 1  και 2  οι αλγεβρικές τιμές των 
ταχυτήτων των σωμάτων Σ1 και Σ2 αμέσως μετά την κρούση. Έχουμε:

 


 


  
1

2

1 2

2

1 2

1 2

1

2m

m m

m m

m m
  ή  υ′1 = – 4 m/s 

και   


 


  
2

1

1 2

1

2 1

1 2

2

2m

m m

m m

m m
  ή  υ′2 = + 6 m/s.

β. Έχουμε: �  

p p p
1 1 1
� �� � � ����� ����΄   ή  p m m

1 1 1 1 1
     ή  Δp1 = – 24 kg · m/s 

και  �  

p p p
2 2 2
� �� � � ����� ����΄   ή  p m m

2 2 2 2 2
      ή  Δp2 = + 24 kg · m/s.

γ. Έχουμε: W m m
F
1

1

2

1

2
1 1

2

1 1

2     ή  WF1
 48 J.

δ. Επειδή τα σώματα Σ1 και Σ2 εκτελούν ευθύγραμμες ομαλές κινήσεις πριν από την κρούση, οι 
εξισώσεις κίνησης τους είναι αντίστοιχα: x1 = x01 + υ1t  ή  x1 = 8t (S.I.) (1)
και x2 = x02 + υ2t  ή  x t

2
20 2� �  (S.I.) (2).

Τη χρονική στιγμή t1 στην οποία τα δύο σώματα συγκρούονται, ισχύει: x1 = x2,
ή λόγω των σχέσεων (1) και (2): t1 = 2 s.

Οι γραφικές παραστάσεις της θέσης κάθε σώματος σε συνάρτηση με τον χρόνο, από τη χρονική 
στιγμή t = 0 έως τη χρονική στιγμή t1 = 2 s, φαίνονται στο διάγραμμα του ακόλουθου σχήματος:

0 2

20

Σ
1

Σ
2

16

t(s)

x(m)
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5. α. Έστω υ το μέτρο της ταχύτητας του συσσωματώματος αμέσως μετά την κρούση. Από 
την Α.Δ.Μ.Ε. για την κίνηση του συσσωματώματος (από τη χρονική στιγμή αμέσως μετά την 
κρούση μέχρι τη χρονική στιγμή στην οποία ακινητοποιείται στιγμιαία στη θέση όπου το νήμα 
γίνεται για πρώτη φορά οριζόντιο), θεωρώντας ως επίπεδο μηδενικής βαρυτικής δυναμικής 
ενέργειας το οριζόντιο επίπεδο που διέρχεται από το κατώτερο σημείο της κυκλικής τροχιάς 

που διαγράφει, έχουμε: E E��� ��� ��� ���� � � ��   ή  1

2
00

2
M m M m g      

ή    2g   ή  υ = 4 m/s.

Από την Α.Δ.Ο. για το σύστημα των δύο σωμάτων κατά την κρούση, έχουμε:
 

p p�� ���� �� ����( ) ( )
� ΄   ή  mυ0 = (Μ + m)υ  ή  υ0 = 40 m/s.

β. Έχουμε: ΄
�

�� ���� �� ����

�� ����

�
�

�� � � �

� �

K K

K
100%   ή  

 




  


1

2

1

2

1

2

100
0

2 2

0

2

m M m

m

%  ή  π = 90%.

γ. Έστω υ1 το μέτρο της ταχύτητας του συσσωματώματος τη χρονική στιγμή t1 στην οποία διέρ-
χεται για πρώτη φορά από τη θέση όπου το νήμα σχηματίζει γωνία � � �60  με την αρχική κα-
τακόρυφη θέση του. Από το ορθογώνιο τρίγωνο ΟΖΓ ( )� � �90  που σχηματίζεται, προκύπτει:

  x


  ή    


h   ή  h   1    ή  h = 0,4 m.

φ

Ο

υΑ

Ζ



Γ

h

x



βαρU 0

T

wx

υ1

w

wyφ

βαρU 0

Από την Α.Δ.Μ.Ε. για τις θέσεις Α και Γ που φαίνονται στο παραπάνω σχήμα προκύπτει:

Εμηχ(Α) = Εμηχ(Γ)  ή  1

2

1

2
0

2

1

2
M m M m M m gh           ή  

1
2 2 m/s.

Το μέτρο της στροφορμής του συσσωματώματος τη χρονική στιγμή t1 ως προς τον άξονα ′x x  
υπολογίζεται από τη σχέση: L M m ( )

1
   ή  L kg m s�� ��3 2 2 2, / .

δ. Η συνισταμένη των δυνάμεων που ασκούνται στο συσσωμάτωμα τη χρονική στιγμή t1, στην 
ακτινική διεύθυνση, δρα ως κεντρομόλος δύναμη. Συνεπώς, ισχύει: ΣFακτ = Fκ

ή  F
M m





 

1

2



  ή  T w
M m

y
 

 
1

2



  ή  T M m g
M m

   
 




1

2



ή  Τ = 30 Ν.
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ε. Το μέτρο του ρυθμού μεταβολής της ορμής του συσσωματώματος τη χρονική στιγμή t1 υπο-

λογίζεται από τη σχέση: dp

dt
F� �   ή  dp

dt
F w

x
� ��

2 2
.

ή  dp

dt

M m
M m g

 







    


1

2
2

2



  ή  dp
dt

�� ��10 7 2kg m/s .

Το μέτρο του ρυθμού μεταβολής της στροφορμής του συσσωματώματος τη χρονική στιγμή t1 

ως προς τον άξονα ′x x  υπολογίζεται από τη σχέση: dL

dt
� ��   ή  dL

dt
w

x

� �

ή  dL

dt
M m g� �( ) ���   ή  dL

dt
�� ��8 3 2 2kg m /s .

6. α. Από την Α.Δ.Μ.Ε. για την κίνηση του σώματος Σ1 πριν από την κρούση, θεωρώντας ως 
επίπεδο μηδενικής βαρυτικής δυναμικής ενέργειας το οριζόντιο επίπεδο που διέρχεται από τη 

θέση Γ, έχουμε: Εμηχ(Α) = Εμηχ(Γ)  ή  1

2

1

2
0

1 0

2

1 1 1

2
m m gR m      ή  υ1 = 8 m/s.

β. Στο ανώτερο σημείο Δ της κυκλικής τροχιάς που διαγράφει το σώμα Σ2 μετά την κρούση, 

ισχύει: ΣFακτ = Fκ  ή  T w
m 

2

2

2


  ή  T
m

m g 2

2

2




 (1).

Για να εκτελέσει ανακύκλωση το σώμα Σ2, πρέπει στο σημείο Δ να ισχύει: T ≥ 0  

ή  m
m g

2

2

2
0




    ή    g.

Επειδή το σώμα Σ2 μόλις που εκτελεί ανακύκλωση, το μέτρο της ταχύτητάς του στο σημείο Δ 
είναι:   g m s 7 2, ./

Από την Α.Δ.Μ.Ε. για την κίνηση του σώματος Σ2 από τη θέση Γ στη θέση Δ, θεωρώντας ως 
επίπεδο μηδενικής δυναμικής ενέργειας το οριζόντιο επίπεδο που διέρχεται από τη θέση Γ, 

έχουμε: Εμηχ(Γ) = Εμηχ(Δ)  ή  1

2

1

2
2

2 2

2

2

2

2
m m m g       ή  υ′2 = 6 m/s.

γ. Το ζητούμενο ποσοστό είναι: � ���

���

� �
� �

E

E �

100%   ή  








1

2

1

2

2 2

2

1 0

2

1

m

m m gR

 (1).

Επειδή η κρούση είναι ελαστική, ισχύει:  


 
2

1

1 2

1

2m

m m
  ή  6

2
8

1

1 2

�
�
m

m m
  ή  m

m

1

2

0 6= ,  (2).

Από τη σχέση (1), λόγω της σχέσης (2), προκύπτει: π = 93,75%.

δ. Επειδή η κρούση είναι ελαστική, ισχύει:   


 
1

1 2

1 2

1

m m

m m
,   ή, λόγω της σχέσης (2):

  
1

2 m/s.  
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Έστω h το ύψος πάνω από το οριζόντιο επίπεδο που διέρχεται από τη θέση Γ, στο οποίο ακι-
νητοποιείται στιγμιαία το σώμα Σ1 μετά την κρούση (θέση Ζ). Από την Α.Δ.Μ.Ε. μεταξύ των 
θέσεων (Γ) και (Ζ), θεωρώντας ως επίπεδο μηδενικής βαρυτικής ενέργειας το οριζόντιο επίπεδο 

που διέρχεται από τη θέση Γ, έχουμε: Eμηχ(Γ) = Εμηχ(Ζ)  ή 1

2
1 1

2

1
m m gh  .   ή  h = 0,2 m.

Γ

Ζ

υ = 0

Λ

υ′1

Ν

Α
K

R

w
1x

w
1

w
1y

x

h

R

βαρU 0
βαρU 0

φ

φ

Όπως φαίνεται από το σχήμα ισχύει:   x

R
  ή    R h

R
  ή    5

7
.

Έχουμε: ΣFακτ = 0  ή  N w
y

� �
1

0   ή  Ν = w1συνφ  ή  Ν = m1gσυνφ  ή  Ν = 50 Ν.

7. α. Έστω ��2  το μέτρο της ταχύτητας του σώματος Σ2 αμέσως μετά την κρούση. Έχουμε:

ΣFακτ = Fκ  ή  T m g
m 


2

2 2

2


  ή  υ′2 = 6 m/s.

Έστω 1  το μέτρο της ταχύτητας του σώματος Σ1 αμέσως μετά την κρούση. Από το Θ.Μ.Κ.Ε. 
για την κίνηση που εκτελεί το σώμα Σ1 από τη χρονική στιγμή αμέσως μετά την κρούση μέχρι 
τη χρονική στιγμή στην οποία ακινητοποιείται, έχουμε: K K W W W

T w N��� ���� � � �
1 1 1

ή  0
1

2
0 0

1 1

2

1 1
    m m gs    ή  υ′1 = 6 m/s.

β. Έστω υ1 το μέτρο της ταχύτητας του σώματος Σ1 ακριβώς πριν από την κρούση. Από την 
Α.Δ.Ο. για το σύστημα των δύο σωμάτων κατά την κρούση έχουμε:  

p p�� ���� �� ����( ) ( )
� ΄

ή  m m m
1 1 1 1 2 2
        ή  υ1 = 12 m/s.

Ισχύει: K m    
1

2
1 1

2   ή  Kολ(πριν) = 72 J  και  Kολ(μετά) = 1

2

1

2
1 1

2

2 2

2
m m    ή  Kολ(μετά) = 72 J.

Επειδή ισχύει: Koλ(πριν) = Κολ(μετά), η κρούση είναι ελαστική.

γ. Έστω ότι το σώμα Σ2 φτάνει μετά την κρούση στο ανώτερο σημείο Δ της κυκλικής τροχιάς 
που διαγράφει με ταχύτητα μέτρου υ. Από την Α.Δ.Μ.Ε για τις θέσεις Γ και Δ, θεωρώντας ως 
επίπεδο μηδενικής βαρυτικής δυναμικής ενέργειας το οριζόντιο επίπεδο που διέρχεται από τη 

θέση Γ, έχουμε: Εμηχ(Γ) = Εμηχ(Δ)  ή  1

2

1

2
2

2 2

2

2

2

2
m m m g       ή    2 3m/s.
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Το μέτρο ′T  της τάσης του νήματος που ασκείται στο σώμα Σ2 στο ανώτερο σημείο Δ της τρο-

χιάς του υπολογίζεται από τη σχέση: ΣFακτ = Fκ  ή    T m g
m

2

2

2


  ή  � �T 30 N.

Επειδή είναι Τ > 0, το σώμα Σ2 εκτελεί ανακύκλωση.

δ. Έστω υ3 το μέτρο της ταχύτητας του σώματος Σ2 τη χρονική στιγμή t στην οποία το νήμα 
γίνεται για πρώτη φορά οριζόντιο μετά την κρούση. Από την Α.Δ.Μ.Ε. για την κίνηση του σώ-
ματος Σ2 από τη θέση Γ στη θέση Ζ όπου το νήμα γίνεται οριζόντιο για πρώτη φορά μετά την 

κρούση, έχουμε: Εμηχ(Γ) = Εμηχ(Ζ)  ή  1

2

1

2
2 2

2

2 3

2

2
m m m g       ή  

3
24 m/s   ή  υ3 = 4,9 m/s.

Το μέτρο του ρυθμού μεταβολής της κινητικής ενέργειας του σώματος Σ2 τη χρονική στιγμή t 

υπολογίζεται από τη σχέση: dK

dt

dW

dt

F� �   ή  dK

dt
m g

ds

dt
� �

2
  ή  dK

dt
m g 

2 3


 ή  dK
dt

�� ��147 J/s.

ε. Από το Θ.Μ.Κ.Ε. για την κίνηση του σώματος Σ1 πριν από την κρούση έχουμε:

K K W W W
T w N��� ���� � � �

1 1 1

  ή  1

2

1

2
0 0

1 1

2

1 0

2

1
m m m gs         ή  

0
 180 m/s

ή  υ0 = 13,41 m/s.
Έστω α1 το μέτρο της επιβράδυνσης με την οποία κινείται το σώμα Σ1 πριν και μετά την κρού-
ση. Ισχύει: ΣFx = m1α1  ή  Τ1 = m1α1  ή  μm1g = m1α1  ή  α1 = 1 m/s2.
Έστω t1 η χρονική στιγμή στην οποία συγκρούονται τα δύο σώματα. Ισχύει:   

1 0 1 1
  t

ή  t1 = 1,41 s.
Έστω t2 η χρονική στιγμή στην οποία ακινητοποιείται το σώμα Σ1 μετά την κρούση. Έχουμε:

0
1 1 2 1

     t t   ή  t t
2 1

6� � s   ή  t2 = 7,41 s.

8. α. Έστω  2  η ταχύτητα του σώματος Σ2 αμέσως μετά την κρούση. Από την Α.Δ.Μ.Ε. για την 
κίνηση του σώματος Σ2 από τη θέση Α στη θέση Δ, θεωρώντας ως επίπεδο μηδενικής δυναμικής 
ενέργειας το οριζόντιο επίπεδο που διέρχεται από τη θέση Α, έχουμε: Εμηχ(Α) = Εμηχ(Δ)

ή  KA + UA = ΚΔ + UΔ  ή  1

2
0 0

2 2

2

2
m m gh      ή   

2
10 m s/ .

Έχουμε:  


 
2

1

1 2

1

2m

m m
  ή  m1 = 1 kg.

β. Έστω  1  η ταχύτητα του σώματος Σ1 αμέσως μετά την κρούση. Έχουμε:   


 
1

1 2

1 2

1

m m

m m
ή    

1
10 m/s.

Το ζητούμενο ποσοστό είναι: 



 


1

2

1

2

100
1 1

2

1 1

2

m

m

%   ή  π = 25%.
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γ. Έστω υ το μέτρο της ταχύτητας του σώματος Σ2 τη χρονική στιγμή στην οποία διέρχεται 
ανερχόμενο από το σημείο Γ του τεταρτοκυκλίου. Από την Α.Δ.Μ.Ε. μεταξύ των θέσεων Α και 
Γ έχουμε:

Εμηχ(Α) = Εμηχ(Γ)  ή  1

2

1

2
2 2

2

2

2

2
m m m gR      ή  υ = 6 m/s.

Το μέτρο της δύναμης 


N  που ασκείται στο σώμα Σ2 από το τεταρτοκύκλιο τη χρονική στιγμή 

στην οποία διέρχεται από το σημείο Γ υπολογίζεται από τη σχέση: ΣFακτ = Fκ  ή  N
m

R
� 2

2�

ή  Ν = 33,75 Ν.

δ. Η ζητούμενη μεταβολή της στροφορμής του σώματος Σ2 δίνεται από τη σχέση:

�
  

L L L� ���� ���   ή αλγεβρικά: �L L L� ���� ���  (1).

Τα διανύσματα 


L���  και 


L���  είναι κάθετα στη σελίδα με φορά από τον αναγνώστη προς τη 
σελίδα. Αν θεωρήσουμε ως θετική τη φορά από τον αναγνώστη προς τη σελίδα, η σχέση (1) 
γίνεται: L m R m R  

2 2 2
    ή  L kg m s  38 4

2
, ./

Επομένως, το μέτρο της μεταβολής της στροφορμής του σώματος Σ2 είναι ΔL kg m s= ⋅38 4 2, / ,  
ενώ το διάνυσμά της είναι κάθετο στη σελίδα με φορά από τη σελίδα προς τον αναγνώστη.

ε. Κατά τη διάρκεια της κίνησης του σώματος Σ2 από τη θέση Γ στη θέση Δ η μοναδική δύναμη 

που ασκείται σε αυτό είναι το βάρος του w
2
.  Συνεπώς, ισχύει: dp

dt
F� �   ή  dp

dt
m g=

2

ή  dp
dt

 30 2kg m/s .

9. α. Έχουμε:   


 
1

1 2

1 2

1

m m

m m
  ή  υ′1 = – 2 m/s 

και  


 
2

1

1 2

1

2m

m m
  ή  υ′2 = + 4 m/s.

β. Επειδή η κρούση της σφαίρας Σ2 με τον τοίχο είναι ελαστική, η σφαίρα Σ2 ανακλάται από τον 
τοίχο με ταχύτητα 

 

    
2 2

.  Συνεπώς ισχύει ότι:   2 2   ή   
2

4 m s/ .

Η μεταβολή της ορμής της σφαίρας Σ2 εξαιτίας της κρούσης με τον τοίχο υπολογίζεται από τη σχέ-
ση: �  

p p p
2 2 2
� �� � � ���� ���   ή  p m m

2 2 2 22
       ή  p m

2 2 2
  2    ή  �p

2
� � �16 kg m/s

ή  ��p k2 �� ��16 g m/s.

γ. Αφού   
2 1

 η σφαίρα Σ2 θα συγκρουστεί ξανά με τη σφαίρα Σ1. Tη t1 χρονική στιγμή 

στην οποία η σφαίρα Σ2 συγκρούεται με τον τοίχο ισχύει:  
2

1

d

t
  ή  t1 = 0,5 s.



251

Κεφάλαιο 1ο: Κρούσεις

Έστω ότι τη χρονική στιγμή t2 η σφαίρα Σ2 συγκρούεται ξανά με τη σφαίρα Σ1, στη θέση Δ που 
απέχει απόσταση ′d  από τον τοίχο.

Σ
1

Σ
2

Σ
2

t
1

t
2

ds
1

Α

υ′
2

υ′
2

υ′
1

υ′′
2

υ′
1

Σ
2

t
1

υ′′
2

d′

Δ

(+)

Έστω s1 το διάστημα που διανύει η σφαίρα Σ1 από τη χρονική στιγμή t = 0 μέχρι τη χρονική 
στιγμή t2. Όπως φαίνεται από το σχήμα ισχύει: � � �d s d

1
  ή         

2 2 1 1 2 2 1
t t t t  

ή  t2 = 2 s.

δ. Για να παραμένει η απόσταση μεταξύ των δύο σφαιρών συνεχώς σταθερή μετά τη κρούση 
της σφαίρας Σ2 με τον τοίχο, πρέπει να ισχύει:   

2 1
  ή    

2 1
  ή     

2 1

ή  2
1

1 2

1

1 2

1 2

1


  

    
  

m

m m

m m

m m
    ή  

��
��
��

m
m
1

2

1
3

.

10. α. Από το Θ.Μ.Κ.Ε. για την κίνηση του σώματος Σ1 πριν από την κρούση έχουμε:

K K W W W
w T��� ���� � � �

1 1 1
�   ή  1

2
0 0

1 1

2

1 1 1 1 1
m m g s m g s      

ή  υ1 = 3 m/s.

β. Έστω υ το μέτρο της ταχύτητας του συσσωματώματος αμέσως μετά την κρούση. Ισχύει:

  s

t

2


  ή  υ = 1 m/s.

Από την Α.Δ.Ο. για το σύστημα των δύο σωμάτων κατά την κρούση, έχουμε:  

p p�� ���� �� ����( ) ( )
� ΄

ή, θεωρώντας ως θετική τη φορά της ταχύτητας υ
1
: m m m m

1 1 2 2 1 2
       

ή  m
m
1

2

2== .

γ. Το ύψος h του κεκλιμένου επιπέδου υπολογίζεται από τη σχέση: ��� �
�
h

s s
1 2

ή  h = 2 m.
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Το ζητούμενο ποσοστό υπολογίζεται από τη σχέση: � �

���

� �
Q

U
100%

ή  
  


   



1

2

1

2

1

2
100

1 1

2

2 2

2

1 2

2

1

m m m m

m gh
%   ή  π = 30%.

δ. Έστω μ2 ο συντελεστής τριβής ολίσθησης μεταξύ του συσσωματώματος και του κεκλιμένου 

επιπέδου. Έχουμε: ΣFx = 0  ή  wx = T  ή  (m1 + m2)gημφ = μ2(m1 + m2)gσυνφ  ή  �2

3

3
� .

Το πηλίκο Q

Q

1

2

 υπολογίζεται από τη σχέση: Q

Q

W

W

T

T

1

2

1=   ή  Q

Q

m g s

m m g s

1

2

1 1 1

2 1 2 2


 

 
 

ή  Q
Q
1

2

3
11

= .

11. α. Από την Α.Δ.Μ.Ε. για την κίνηση του σώματος Σ1 πριν από την κρούση, θεωρώντας ως 
επίπεδο μηδενικής βαρυτικής δυναμικής ενέργειας το οριζόντιο επίπεδο που ταυτίζεται με τη 

βάση του κεκλιμένου επιπέδου, έχουμε: Εμηχ(αρχ) = Εμηχ(τελ)  ή  1

2

1

2
1 0

2

1 1

2

1
m m m gh  

ή  |υ1| = 10 m/s. Συνεπώς, είναι: p1 = m1|υ1|  ή  p1 = 20 kg · m/s.

β. Επειδή η κρούση είναι ελαστική ισχύει:   


 
1

1 2

1 2

1

m m

m m
 (1).

Eπειδή μετά την κρούση παραμένει στο σώμα Σ1 το 25% της κινητικής ενέργειας που είχε ακρι-

βώς πριν από την κρούση, ισχύει: Κ1(μετά) =  25

100
1

K ����� �   ή  1

2

1

4

1

2
1 1

2

1 1

2
m m      ή    

1 1

1

2
ή   

1
5 m s/ .

Συνεπώς από τη σχέση (1) προκύπτει: � �
�
�

5
m m

m m

1 2

1 2

10   ή  m2 = 6 kg.p –p

γ. Η μεταβολή της ορμής του σώματος Σ1 εξαιτίας της κρούσης είναι: �  

p p p
1 1 1
� �� � � ����� ����΄

ή  p m m
1 1 1 1 1
     ή  �p

1
� � �30 kg m/s   ή  ��p1 �� ��30 kg m/s.

Επειδή η ορμή του συστήματος των δύο σωμάτων διατηρείται σταθερή κατά την κρούση ισχύει:
Δpολ = 0  ή  Δp1 + Δp2 = 0  ή  � �p p

2 1
� �   ή  � �p p

2 1
�   ή  ��p kg m s2 30�� �� / .

δ. Το σώμα Σ2 αμέσως μετά την κρούση αρχίζει να κινείται προς την κορυφή του κεκλιμένου 
επιπέδου επιβραδυνόμενο με επιβράδυνση μέτρου α2 και αφού ακινητοποιηθεί στιγμιαία, αρχί-
ζει να κινείται προς τη βάση του κεκλιμένου επιπέδου επιταχυνόμενο με επιτάχυνση ίδιου μέ-
τρου. Από τον θεμελιώδη νόμο της μηχανικής για την κίνηση του σώματος Σ2 μετά την κρούση, 
προκύπτει: ΣFx = m2α2  ή  w2x = m2α2  ή  m2gημφ = m2α2  ή  α2 = 5 m/s2.
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Έστω t1 η χρονική στιγμή στην οποία το σώμα Σ2 διέρχεται ξανά από το σημείο όπου έγινε η 
κρούση. Η μετατόπιση του σώματος Σ2 από τη χρονική στιγμή t = 0 έως τη χρονική στιγμή t1 

είναι ίση με μηδέν. Δηλαδή ισχύει: x t t
2 2 1 2 1

21

2
     ή  0

1

2
2 1 2 1

2  t t

ή  t t
1 2 2 1

1

2
0 




   (2).

Από την εξίσωση (2) προκύπτει: t1 = 0 (άτοπο)  ή     
2 2 1

1

2
0t   ή  t

1

2

2

2






ή  t

m

m m

1

1

1 2

1

2

2
2








  ή  t1 = 2 s.

12. α. Έστω υ το μέτρο της ταχύτητας του συσσωματώματος αμέσως μετά την κρούση. Από 
την Α.Δ.Ο. για το σύστημα των δύο σωμάτων κατά την κρούση, έχουμε: 

 

p p�� ���� �� ����( ) ( )
� ΄

ή  mυ0 = (Μ + m)υ  ή  υ = 3 m/s.
Έστω s το διάστημα που διανύει το συσσωμάτωμα από τη χρονική στιγμή αμέσως μετά την 
κρούση μέχρι τη χρονική στιγμή στην οποία ακινητοποιείται. Από το Θ.Μ.Κ.Ε. έχουμε:

K K W W W
w T��� ���� � � � �   ή  0

1

2
0

2          M m M m g s M m g s   

ή  s = 0,6 m.

β. Ισχύει: �  

p p p�� �� ���� �� ����. .( ) .( )
� �΄   ή  p m m  

.
 

0
  ή  �p��.

� � �29,7 kg m/s

ή  p 29,7 kg m/s.βλ.

γ. Έχουμε: Qολ = Qκρούσης + QT  ή  Q m M m M m g s          1

2

1

2
2

0

2 2

ή  Qολ = 4.485 J.

δ. Έστω υ1 το μέτρο της ταχύτητας με την οποία το συσσωμάτωμα διέρχεται ξανά από το ση-
μείο Α. Από το Θ.Μ.Κ.Ε. για την κίνηση του συσσωματώματος από τη χρονική στιγμή στην 
οποία ακινητοποιείται στιγμιαία μέχρι τη χρονική στιγμή στην οποία διέρχεται ξανά από το 
σημείο Α έχουμε: K K W W W

w T��� ���� � � � �

ή  1

2
0 0

1

2
M m M m g s M m g s               ή  1 3 m/s.υ

Ο ρυθμός μεταβολής της κινητικής ενέργειας του συσσωματώματος τη χρονική στιγμή στην 

οποία διέρχεται ξανά από το σημείο Α, υπολογίζεται από τη σχέση: dK

dt
F  

1

ή  dK

dt
M m g M m g         

1
 ή  dK

dt
= 25 3 J/s.
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Ο ρυθμός μεταβολής της βαρυτικής δυναμικής ενέργειας του συσσωματώματος υπολογίζεται 

από τη σχέση: 
dU

dt

dW

dt

w��� � �   ή  
dU

dt

dx

dt
x

��� � �w   ή  
dU

dt
M m g

    
1

ή  
dU

dt
50 3 J/s.βαρ

13. Βλέπε Βασική λυμένη άσκηση 8.

α.   
1

 4 m/s,    
2

2 m s/ . 		  β. E K m   
2 2 2

21

2
.   ή  Eμετ = 10 J.

γ. �
max

� 0 4, m. 				   δ. dp

dt
� �25 kg m/s

2
.

14. Βλέπε τη λύση της άσκησης 197, στο κεφάλαιο των Κρούσεων.

α. υ = 2 m/s.				    β. Qολ = 980 J.

γ. t1 = 2 s.				    δ. d = 2 m.

15. α. Επειδή η κρούση μεταξύ των σωμάτων Σ1 και Σ2 είναι ελαστική, ισχύει:

  


 
1

1 2

1 2

1

m m

m m
  ή  υ′1 = – 2 m/s  και   


 

2

1

1 2

1

2m

m m
  ή  υ′2 = + 4 m/s.

β. Έστω υ το μέτρο της κοινής ταχύτητας που αποκτούν τα σώματα Σ2 και Σ3 τη χρονική στιγμή 
στην οποία το ελατήριο αποκτά τη μέγιστη συσπείρωση του ∆

max
.  Από την Α.Δ.Ο. για το σύ-

στημα των σωμάτων Σ2 και Σ3 έχουμε:  p p�� ��� �� ���� � � ��   ή  m m m
2 2 2 3

       ή  υ = 1 m/s.

γ. Από την Α.Δ.Μ.Ε. για το σύστημα των σωμάτων Σ2, Σ3 και του ελατηρίου έχουμε:
Εμηχ(αρχ) = Εμηχ(τελ)  ή  K U K U��� �� ��� ��� �� ���� � �� � � �

ή  1

2
0

1

2

1

2
2 2

2

2 3

2 2
m m m k

max
          ή  ��max 0 4, m.Δ

δ. Έστω ���2  και υ3 οι αλγεβρικές τιμές των ταχυτήτων των σωμάτων Σ2 και Σ3 αντίστοιχα τη 
χρονική στιγμή στην οποία το σώμα Σ2 χάνει την επαφή του με το ελατήριο. Από την Α.Δ.Ο. 
και την Α.Δ.Μ.Ε. για το σύστημα των σωμάτων Σ2, Σ3 και του ελατηρίου από τη χρονική στιγμή 
στην οποία το σώμα Σ2 προσκρούει στο ελεύθερο άκρο του ελατηρίου μέχρι τη χρονική στιγμή 
στην οποία το σώμα Σ2 χάνει την επαφή του με το ελατήριο, προκύπτει:

  


 
2

2 3

2 3

2

m m

m m
  ή    

2
2 /m s   ή  2 2 /m s.υ  

και   
3

2

2 3

2

2



m

m m
  ή  υ3 = 2 m/s.
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16. α. Έστω 2  η ταχύτητα του σώματος Σ2 αμέσως μετά την κρούση του με το συσσωμάτω-
μα. Από το Θ.Μ.Κ.Ε. για την κίνηση του σώματος Σ2 μετά την κρούση, έχουμε:

K K W W W
T w N��� ���� � � �   ή  0

1

2
0 0

2 2

2

2
    m m gs    ή  υ′2 = 2 m/s.

β. Έστω υ1 και 1  οι ταχύτητες του συσσωματώματος ακριβώς πριν και αμέσως μετά την κρού-

ση με το σώμα Σ2 αντίστοιχα. Έχουμε:    
 

 
1

1 2

1 2

1

( )m m m

m m m
 και    

 
 

2

1

1 2

1

2( )m m

m m m
 (2).

Σύμφωνα με την εκφώνηση, ισχύει:    
1 2

  ή  
m m m

m m m

m m

m m m

1 2

1 2

1

1

1 2

1

2  
 

  
 

 
( )

ή  m2 = 3 kg.

γ. Από τη σχέση (2) προκύπτει: υ1 = 4 m/s. Έστω ��  ο συντελεστής τριβής ολίσθησης μεταξύ 
του συσσωματώματος και του οριζόντιου δαπέδου. Από το Θ.Μ.Κ.Ε. για την κίνηση του συσ-
σωματώματος πριν από την κρούση με το σώμα Σ2 έχουμε: K K W W W

T w N��� ���� � � �

ή  1

2

1

2
0 0

1 1

2

1 0

2

1
m m m m m m gd               ή  μ′ = 0,5.

δ. Έστω α2 το μέτρο της επιβράδυνσης του σώματος Σ2 μετά την κρούση του με το συσσωμά-
τωμα. Έχουμε: ΣFx = m2 α2  ή  Τ2 = m2α2  ή  μm2g = m2α2  ή  α2 = 1 m/s2.

Έστω Δt το χρονικό διάστημα κίνησης του σώματος Σ2 από τη χρονική στιγμή αμέσως μετά την 
κρούση του με το συσσωμάτωμα μέχρι τη χρονική στιγμή στην οποία ακινητοποιείται. Ισχύει: 
0

2 2
   t   ή  Δt = 2 s.

Έστω α το μέτρο της επιβράδυνσης με την οποία κινείται το συσσωμάτωμα. Έχουμε:
ΣFx = (m1 + m)α  ή  Τ = (m1 + m)α  ή  � �� � � �� �� �m m g m m

1 1
   ή  α = 5 m/s2.

Το χρονικό διάστημα κίνησης � �t  του συσσωματώματος από τη χρονική στιγμή αμέσως μετά 
την κρούση του με το σώμα Σ2 μέχρι τη χρονική στιγμή στην οποία ακινητοποιείται υπολογίζε-
ται από τη σχέση: 0

1
   t   ή  � � �t 0 4, s.

Το διάστημα ′s  που διανύει το συσσωμάτωμα μέχρι να ακινητοποιηθεί υπολογίζεται από τη 

σχέση:       s t t 
1

21

2
    ή  � �s 0 4, m.

Αφού � �t t� �,  τη χρονική στιγμή στην οποία ακινητοποιείται το συσσωμάτωμα το σώμα Σ2 
δεν έχει ακόμη ακινητοποιηθεί.
Το διάστημα s2 που διανύει το σώμα Σ2 στο χρονικό διάστημα � �t  υπολογίζεται από τη σχέση:

s t t
2 2 2

21

2
     ( )   ή  s2 = 0,72 m.

Επομένως, η απόσταση μεταξύ του σώματος Σ2 και του συσσωματώματος τη χρονική στιγμή 
στην οποία ακινητοποιείται το συσσωμάτωμα, είναι: d s s� � �

2
  ή  d = 1,12 m.
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ε. Από την Α.Δ.Ο. στον άξονα ′x x  κατά την κρούση του βλήματος με το σώμα Σ1, έχουμε:
 

p p
x x�� ���� �� ����( ) ( )
� ΄   ή  m m m

x
 

0 1 0
      ή  m m m  

0 1 0
      ή  υ0 = 120 m/s.

Το συνολικό ποσό θερμότητας προκύπτει: Q E E�� �� ��� �� ���� �� � � �  

ή  Q m  1

2
0

2   ή  Qολ = 720 J.

17. α. υ = 3 m/s.			  β. υ2 = 2 m/s.		  γ. π = 70%.

δ. p2 63 kg m/s.Δ 		  ε. F = 600 3 N.

18. α. φ = 90°.

β. 1 2 3
3

m/s,υ  2
2
3

m/s.υ

γ. 


 
 

K

K

2

1

100%   ή  



 

1

2

1

2

100
2 2

2

1

2

m

m

%    ή  π = 25%.

δ. Έχουμε: p m
2 2 2
     ή  

�p2
2
3

kg m/s.Δ

Επειδή η ορμή του συστήματος των δύο σφαιρών διατηρείται σταθερή κατά την κρούση, ισχύει:

  

p p
1 2
    ή  � �

 

p p
1 2
�   ή  

�p1
2
3

kg m/s.Δ
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19. α. Οι δυνάμεις που ασκούνται στο σώμα Σ2 πριν από την κρούση είναι: το βάρος του w
2

 
και η δύναμη 



Ν  από τη ράβδο. Επειδή το σώμα Σ2 ισορροπεί, ισχύει: �
 

F � 0   ή  ΣFy = 0
ή  Ν = w2  ή  Ν = m2g  ή  Ν = 30 Ν.

Α Γ
ΔΣ

2

(2)(1)

N

w
2

Οι δυνάμεις που ασκούνται στη ράβδο πριν από την κρούση είναι: το βάρος της w  στο μέσον 
της Κ, οι δυνάμεις 



F
1
 και 



F
2
 από τα υποστηρίγματα (1) και (2) αντίστοιχα και η δύναμη 



��  
από το σώμα Σ2. Ισχύει: � �� �.   

Α Γ
K

(2)(1)

w

L

Σ
2

F
1

N

+

Δ

d
F

2

Επειδή η ράβδος ισορροπεί, ισχύει:

Στ(Δ) = 0  ή  � � � �
F w F
1 2

0� � � ���   ή  � � � � � � ��
�
�

�
�
� � �F L d N L d w

L
d

1

2
0 0( ) ( )

ή  F L d N L d Mg
L

d
1

2
( ) ( )� � � � ��

�
�

�
�
�   ή  F N1

110
3

== .

Επειδή η ράβδος ισορροπεί, ισχύει ακόμη: �
 

F � 0   ή  ΣFy = 0  ή  F F N w
1 2

0� � � � �

ή  F N Mg F
2 1
� � �   ή  F N2

40
3

== .
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β. Έστω υ0  το μέτρο της ταχύτητας του συσσωματώματος αμέσως μετά την κρούση.

+

Α Γ

(1)

Σ
2

Σ
1

υ
1

Α Γ

(2)(1)

Σ
1
 + Σ

2

υ
0

Δ

(2)

Δ

Aκριβώς πριν

από την κρούση

Αμέσως μετά

την κρούση

Από την Α.Δ.Ο. για το σύστημα των σωμάτων Σ1 και Σ2 κατά την κρούση έχουμε: 
 

p p
¬�� ���� �� ���( ) ( )

� (μετά)   ή  m1υ1 = (m1 + m2)υ0  ή  υ0 = 6 m/s.

Το ζητούμενο ποσοστό υπολογίζεται από τη σχέση:

�
����

� �
Q

K

K

1

100

( )

%   ή  
 




 


1

2

1

2

1

2

100
1 1

2

1 2 0

2

1 1

2

m m m

m

( )

%   ή  π = 75%.

γ. Η ράβδος θα χάσει την επαφή της με το υποστήριγμα (1) αμέσως μετά τη χρονική στιγμή t1 
στην οποία το συσσωμάτωμα θα βρεθεί στο σημείο Ζ της ράβδου που φαίνεται στο ακόλουθο 
σχήμα. Έστω s το διάστημα που διανύει το συσσωμάτωμα από τη χρονική στιγμή t = 0 έως τη 
χρονική στιγμή t1. Στα ακόλουθα σχήματα έχουν σχεδιαστεί οι δυνάμεις που ασκούνται στη 
ράβδο και το συσσωμάτωμα τη χρονική στιγμή t1.

Σ
1
 + Σ

2

υ

υ

Α Γ

Σ
1
 + Σ

2

Ζ

ΓK
= 0

(2)(1)

w

w
ολ

L

s

1F
2F

2N

+

Δ
Δ

d

Ν
2

Τ

Τ′

Τη χρονική στιγμή t1 ασκούνται στο συσσωμάτωμα από τη ράβδο η δύναμη 


Ν2  που είναι κά-
θετη στη ράβδο και η τριβή ολίσθησης 



Τ  που αντιστέκεται στην κίνηση του συσσωματώματος. 

Ισχύει: ΣFy = 0  ή  Ν2 – wολ = 0  ή  Ν2 = (m1 + m2)g  ή  Ν2 = 40 Ν  και

Τ = μΝ2  ή  Τ = 20 Ν.
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Στη ράβδο τη χρονική στιγμή t1 ασκούνται το βάρος της w,  οι δυνάμεις 


′F
1

 και 


′F
2

 από τα υπο-
στηρίγματα (1) και (2) αντίστοιχα και οι δυνάμεις 



��2  και 


��  από το συσσωμάτωμα, οι οποίες 
είναι οι αντιδράσεις των δυνάμεων 



Ν  και 


Τ.  Συνεπώς, για τα μέτρα τους ισχύει: � �� �2 2  και 
� �� �.  

Τη χρονική στιγμή t1 στην οποία η ράβδος ανατρέπεται, ισχύει: 
 

� �F
1

0.  

Επειδή τη χρονική στιγμή t1 η ράβδος ισορροπεί οριακά, ισχύει:

Στ(Δ) = 0  ή  � � � � �� � � �� � � � �
F w F N T
1 2 2

0   ή  0
2

0 0 0
2

� ��
�
�

�
�
� � � � � �� ��� �� � �w

L
d N s L d  

ή  N s L d Mg
L

d
2

2
� �� ��� �� � ��

�
�

�
�
�   ή  N s N L d Mg

L
d

2 2

2
� �� � � ��

�
�

�
�
�

ή   s

Mg
L

d N L d

N
�

��
�
�

�
�
� � �� �

2
2

2

  ή  s = 3,5 m.

Έστω α το μέτρο της επιβράδυνσης του συσσωματώματος. Ισχύει: ΣFx = (m1 + m2)α
ή  Τ = (m1 + m2)α  ή  α = 5 m/s2. Επειδή το συσσωμάτωμα εκτελεί ομαλά επιβραδυνόμενη κί-

νηση, ισχύει: s t   
0 1 1

21

2
0(t )   ή  2 5 6 3 5 0

1

2

1
, ,t t    (S.I.) (1). Οι λύσεις της εξίσωσης 

(1) είναι: t1 =1,4 s  ή  t1 = 1 s.

Η χρονική εξίσωση της ταχύτητας υ του συσσωματώματος δίνεται από τη σχέση: 

   
0

t   ή    6 5t  (S.I.) (2).

Από τη σχέση (2) για t = t1 = 1,4 s προκύπτει: � � �1 m s/  (άτοπο), ενώ από την ίδια σχέση για 
t = t1 = 1 s προκύπτει: υ = 1 m/s. Συνεπώς, δεκτή λύση είναι η t1 = 1 s.

δ. Έστω s′ το διάστημα που έχει διανύσει το συσσωμάτωμα από τη χρονική στιγμή t = 0 έως τη 

χρονική στιγμή t2 = 0,8t1. Είναι:    s t t 
0 2 2

21

2
0( )   ή  � �s m3 2, .

Το συσσωμάτωμα τη χρονική στιγμή t2 βρίσκεται στο σημείο Λ της ράβδου που φαίνεται στο 
ακόλουθο σχήμα.

Α Γ
K

(2)(1)

w

L

T

s

2N

+

Δ Λ

d

F
ΔF

A

F
Δy

F
Δx
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Επειδή η ράβδος ισορροπεί, ισχύει: Στ(Δ) = 0  ή  � � � � �
F w F N T� �
� � � � �� �

2

0

ή  � �� � � ��
�
�

�
�
� � � � � � �� ��� �� � �F L d w

L
d N s L d

A

2
0 0 0

2

ή  F L d Mg
L

d N s L d
A

�� � � ��
�
�

�
�
� � � � �� ��� ��

2
2

  ή  FA = 4 N.

Επειδή η ράβδος ισορροπεί, ισχύει ακόμη: �
 

F � 0   ή  ΣFx = 0 (3)  και  ΣFy = 0 (4).

Από τη σχέση (3) προκύπτει:  � � �� �F x
0   ή  FΔx = T  ή  FΔx = 20 N.

Από τη σχέση (4) προκύπτει: F F w N
y A� � � � � �

2
0   ή  F Mg N F

y A� � � �
2

  ή  FΔy = 56 N.

Το μέτρο της δύναμης που ασκείται στη ράβδο από το υποστήριγμα (2) τη χρονική στιγμή t2 

υπολογίζεται από τη σχέση: F F F
x y� � �� �2 2   ή  F N3 152.Δ .

ε. Έστω   η ταχύτητα του συσσωματώματος τη χρονική στιγμή t2. Από τη σχέση (2) έχουμε: 
    

0 2
t   ή    2 m s/ .

Ο ρυθμός μεταβολής της κινητικής ενέργειας του συσσωματώματος τη χρονική στιγμή t2 προ-

κύπτει: dK

dt

dW

dt

F� �   ή  dK

dt

Fdx

dt
�
�   ή  dK

dt
F     ή  dK

dt
     ή  dK

dt
J s  40 / .

20. α. Στο παρακάτω σχήμα έχουν σχεδιαστεί οι δυνάμεις που ασκούνται στη ράβδο.

Λ

K Z

Ν

Τ
στ

F

F
δ

w

x

h

+

Δ

Επειδή η ράβδος ισορροπεί, ισχύει: Στ(Λ) = 0  ή  � � �
�F w F

� � � 0   ή  � � � �F w( ) ( )�� �� 0 0   

ή  � � �Fh wx 0   ή  FL w
L

��� �����
2

  ή  F �� 15 3 ��.

β. Επειδή η ράβδος ισορροπεί, ισχύει: �
 

F � 0   ή  ΣFx = 0 (1)  και  ΣFy = 0 (2).
Από τη σχέση (2) προκύπτει: � � �w 0   ή  N = w  ή  Ν = 30 Ν.
Από τη σχέση (1) προκύπτει: F T� ��� 0   ή  Tστ = F  ή  T�� �15 3 �.

Το μέτρο της δύναμης που ασκείται στη ράβδο από το οριζόντιο δάπεδο υπολογίζεται από τη 

σχέση: F� ��� �� �2 2   ή  F 1 575. .δ
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γ. Επειδή το σώμα Σ ισορροπεί, ισχύει: �
 

F � 0   ή  ΣFy = 0  ή  Τ = w1  ή  Τ = 10 Ν.
Είναι: � �� �   ή  � �� �10 .  

Λ

M

Σ

Z

Ν′

Τ′
στ

Τ′
Τ

F′

F′
δ

w
w

1

x

y

d

L

h
+

ΔN

K

φ

Έστω d η μέγιστη απόσταση από το άκρο Λ της ράβδου όπου μπορούμε να αναρτήσουμε το 
σώμα Σ, ώστε η ράβδος να μην ολισθήσει. Στην περίπτωση αυτήν, για το μέτρο της στατικής 
τριβής ����  που ασκείται στη ράβδο από το δάπεδο ισχύει: � �� ��� ��   ή  � � ���� �

s
N  (3).

Επειδή η ράβδος ισορροπεί ισχύει: �
 

F � 0   ή  ΣFx = 0 (4)  και  ΣFy = 0 (5). 
Από τη σχέση (5) έχουμε: � � � � �N w T 0   ή  � � � �N T w   ή  � �N N40 .

Συνεπώς, από τη σχέση (3) προκύπτει: � ���� 20 3 N.

Από τη σχέση (4) προκύπτει: ΣFx = 0  ή  � � �F ���   ή  � �F 20 3 �.

Επειδή η ράβδος ισορροπεί ισχύει: Στ(Λ) = 0  ή  � � � �
�� � �� � � �

F w F� 0

ή  � � � � � � �F w( ) ( ) ( )�� � �� �� 0 0   ή  � � � �� y wx F h   ή  � � � �T d w
L

F L���� ���� ���
2

  
ή  d = 2 m.
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21. Έστω ότι το σύστημα της τροχαλίας και των σημειακών σωμάτων Σ1, Σ2 και Σ3 ισορροπεί 
ακίνητο.

Σ
A

Σ
Γ

Σ
1

Σ
2

Σ
3

Α
Γ

Β

Ο

+d d d

F
O

F′

Τ′
1

Τ′
2

Τ
1

Τ
2

Τ′
3

Τ
3

F
w

A
w

Γ

w
1

w
3

w
2

w
τροχ

ΟR

Επειδή το σώμα Σ1 ισορροπεί, ισχύει: �
 

F � 0   ή  ΣFy = 0  ή  T w
1 1

0� �   
ή  T1 = m1g  ή  T1 = 20 N.
Επειδή το σώμα Σ3 ισορροπεί, ισχύει: �

 

F � 0   ή  ΣFy = 0  ή  T w
3 3

0� �   
ή  T3 = m3g  ή  T3 = 10 N.
Είναι: � �T

3 3
�   ή  � �T

3
10 �.  

Επειδή το σώμα Σ2 ισορροπεί, ισχύει: �
 

F � 0   ή  ΣFy = 0  ή  T w
2 2 3

0� � � ��   
ή  T m g

2 2 3
� � ��   ή  T2 = 20 N.

Επειδή η τροχαλία ισορροπεί, ισχύει: � ��( )� � 0   ή  � � � �
����� �� � � �� �

1 2

0
F w

  
ή  � � � � � �T R T R

1 2
0 0 0   ή  � � �T R T R

1 2
  ή  � � �T T

1 2
  ή  T1 = T2, που ισχύει.

Επειδή η τροχαλία ισορροπεί, ισχύει ακόμη: �
 

F � 0   ή  ΣFy = 0  ή  F w� � � � � ����� � �
1 2

0   
ή  F g� � � � �� � �

1 2
  ή  F = Mg + T1 + T2   ή  F = 80 N.

Είναι: � �F F   ή  � �F N80 .

Έστω ότι η ράβδος ισορροπεί στην οριζόντια θέση. Είναι: Στ(Ο) = 0  ή  � � � �
w w F F

A

� � � ��� �
0   

ή  w d w d F d
A

2 0 0� � � � ��   ή  2m g m g F
A
� � ��   ή  m

F

g
m

A� �
�
� 2   ή  mΓ = 6 kg, που ισχύει.

Επομένως, όλο το σύστημα ισορροπεί με τη ράβδο στην οριζόντια θέση.
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β. Στο ακόλουθο σχήμα έχουν σχεδιαστεί οι δυνάμεις που ασκούνται στο σύστημα της ράβδου 
και των σημειακών σωμάτων ΣA και ΣΓ τη χρονική στιγμή στην οποία η ράβδος σχηματίζει για 
πρώτη φορά οξεία γωνία � � �30  με την κατακόρυφο.

φ

Α

Γ

Β

Ο
d

d
F

Ο

w
Ax

w
Ay

w
A

φ

w
Γx

w
Γy

w
Γ

φ

Ο ρυθμός μεταβολής της στροφορμής του συστήματος της ράβδου και των σημειακών σωμά-

των ΣA και ΣΓ ως προς τον άξονα x′x υπολογίζεται από τη σχέση: dL

dt
w w F

A



  � � �� � �
� �

 

ή, αλγεβρικά: dL

dt
w w F

A

� � �� � �
� �

ή, θεωρώντας ως θετική φορά τη φορά από τη σελίδα προς τον αναγνώστη:

dL

dt
w d w d

Ay y
� � �2 0�  ή  dL

dt
m g d m g d

A
� �2 ��� ����   ή  dL

dt
kg m s� � �40

2 2
/

ή  dL
dt

kg m s�� ��40 2 2.

γ. Έστω ω το μέτρο της γωνιακής ταχύτητας του συστήματος της ράβδου και των σημειακών 
σωμάτων ΣA και ΣΓ ακριβώς πριν από την κρούση. Η γραμμική ταχύτητα του σημειακού σώμα-
τος ΣA ακριβώς πριν από την κρούση δίνεται από τη σχέση: υΑ = ω2d (1).

Η γραμμική ταχύτητα του σημειακού σώματος ΣΓ ακριβώς πριν από την κρούση δίνεται από τη 
σχέση: υΓ = ωd (2).
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Σ
A

Σ
A

Σ
Γ

Σ
Γ

Α

Α

Γ

Β

Β

Ο

d

υ
Γ

υ
Α

d

d

βαρU 0=
βαρU 0=

Θέση Ι

Θέση ΙΙ

Από την Α.Δ.Μ.Ε. μεταξύ της αρχικής θέσης (Θέση Ι) και της τελικής θέσης (Θέσης ΙΙ) του συ-
στήματος της ράβδου και των σημειακών σωμάτων ΣΑ και ΣΓ, θεωρώντας ως επίπεδο μηδενικής 
βαρυτικής δυναμικής ενέργειας το οριζόντιο επίπεδο που διέρχεται από το σημείο Α, έχουμε:

Εμηχ(αρχ) = Εμηχ(τελ)  ή  Καρχ + Uαρχ = Κτελ + Uτελ 

ή  0 2 2
1

2

1

2
0

2 2     m g d m g d m m m gd
A A       

ή  4 2
2 2

m gd m gd m m
A A

         ή, λόγω των σχέσεων (1) και (2):

( )4 2 4
2 2 2 2

m m gd m d m d
A A
� � �� �� �   ή  � � �

�
( )

( )

4 2

4

m m g

m m d

A

A

�

�

  ή  ω = 4 rad/s.

Η στροφορμή του συστήματος που αποτελείται από το σημειακό σώμα Σ4 και το ενιαίο σώμα 
που δημιουργούν η ράβδος ΑΒ μαζί με τα σημειακά σώματα ΣA και ΣΓ διατηρείται σταθερή 
κατά την κρούση. Έστω ��  το μέτρο της γωνιακής ταχύτητας του συστήματος της ράβδου και 
των σημειακών σωμάτων ΣA, ΣΓ και Σ4 αμέσως μετά την κρούση. Η γραμμική ταχύτητα του 
συσσωματώματος αμέσως μετά την κρούση δίνεται από τη σχέση:    2d  (3).
Η γραμμική ταχύτητα του σημειακού σώματος ΣΓ αμέσως μετά την κρούση δίνεται από τη 
σχέση:    d  (4).

Επειδή η ράβδος είναι αβαρής, δεν έχει στροφορμή.
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Σ
Γ

Σ
A

Σ
4

Α

Γ Γ

Β Β

Ο

d

d

Aκριβώς πριν

από την κρούση

Αμέσως μετά

την κρούση

Σ
A
 + Σ

4

Σ
Γ

Α

Ο

υ′
Γ

υ′
Α

ω ω′

Από την Αρχή Διατήρησης της Στροφορμής κατά την κρούση, έχουμε:
 

L L  ΄   ή  m d m d m m d m d
A A
        2 2

4
    ( )  

ή, λόγω των σχέσεων (1), (2), (3) και (4): m d m d m m d m d
A A
� � � �( ) ( ) ( )2 2

2 2

4

2 2� � � �� �
� �

ή  ( ) ( )4 4
4

m m m m m
A A
� � � �� � �

� �� �   ή  � �
�� �

� �
�

�4

4
4

m m

m m m

A

A

�

�( )

ή  � ��
4

3
rad s/ .

Επομένως, από τη σχέση (3) για � ��
4

3
rad s/ ,  προκύπτει: 

8
3

m s/ .υΑ  

δ. Έστω α1 και α2 τα μέτρα των επιταχύνσεων με τις οποίες κινούνται τα σημειακά σώματα Σ1 
και Σ2.
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Σ
1

Σ
2

Α

Γ

Β

ΔΖ

Ο

υ
1

α
1

α
2

υ
2

υ

υ′

R

Έστω μια τυχαία χρονική στιγμή t στην οποία τα σημειακά σώματα Σ1 και Σ2 έχουν ταχύτητες 


υ1  και υ2  αντίστοιχα. Επειδή το νήμα που είναι τυλιγμένο στο αυλάκι της τροχαλίας είναι 
αβαρές και μη εκτατό, ισχύει:  

 1     ή   1 
  (5) και   

 2     ή   2    (6).
Έστω ωτ το μέτρο της γωνιακής ταχύτητας της τροχαλίας την τυχαία χρονική στιγμή t. 

Από τη σχέση (5) έχουμε: υ1 = ωτR  ή παραγωγίζοντας: d

dt

d

dt
R

� ��1 �

ή  α1 = αγωνR  ή  α1 = 2 m/s2.

Από τη σχέση (6) έχουμε: υ2 = ωτR  ή παραγωγίζοντας: d

dt

d

dt
R

� ��2 �

ή  α2 = αγωνR  ή  α2 = 2 m/s2.

ε. Στο ακόλουθο σχήμα έχουν σχεδιαστεί οι δυνάμεις που ασκούνται  στα σώματα κατά τη  
διάρκεια της περιστροφής της τροχαλίας.

Σ Σ
Γ

Σ
1

Σ
2

Α
Γ

Β

Ο

+d d d
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Από τον θεμελιώδη νόμο της μηχανικής για την κίνηση του σημειακού σώματος Σ1 έχουμε:
ΣFy = m1α1  ή  w T m

1 1 1 1
� � �  ή  T m g m

1 1 1 1
� � �  ή  T1 = 16 N.

Από τον θεμελιώδη νόμο της μηχανικής για την κίνηση του σημειακού σώματος Σ2, έχουμε:
ΣFy = m2α2  ή  T w m

2 2 2 2
� � �  ή  T m g m

2 2 2 2
� � �  ή  T2 = 12 N.

Επειδή η τροχαλία ισορροπεί μεταφορικά, ισχύει: ΣFy = 0  ή  F w� � � � � ����� � �
1 2

0

ή  F w� � � � �� �
1 2 ����   ή  F = T1 + T2 + Mg  ή  F = 68 N.

Επειδή η ράβδος ισορροπεί, ισχύει: Στ(Ο) = 0  ή  � � � �
w w F F

O

� � � ���
0

ή  w d w d F d2 0 0� � � � ��   ή  2mgd m gd F d� � ��   ή  m
F

g

m
� �

2 2

�

ή  m = 0,4 kg.

22. α. Στο ακόλουθο σχήμα έχουν σχεδιαστεί οι δυνάμεις που ασκούνται στα σώματα.

φ

φ

(2)

(1)

φ

ΟΛ

Δ

Δίσκος (Δ)

(Σ
1
)

(Σ
2
)

Γ

Σ

Α

Ζ

R
Δ

2R

Τ
στ

Τ
2

Τ
1

Τ′
2

Τ′
1

F
αξ

F
y

F
x

F

Ν

w
Κ(x)

w
Κ(y)

w
Κ

w
τροχ

w

w
Δ

Ο′ R

RΚ

+

Σ (δίσκος _ ράβδος)

Επειδή το ενιαίο σώμα Σ (δίσκος – ράβδος) ισορροπεί, ισχύει: Στ(Ο) = 0

ή  � � � �
F w w
� � � �

� �
1

0   ή  0 0 0
1

� � � �T w( ) ( )�� ��   ή  T g
1

2 2

 

��� ����� �

ή  T
g

1
�
� ����

���
  ή  Τ1 = 60 Ν.

Είναι: � �T
1 1

�   ή  � �T
1

60 �.

Επειδή η τροχαλία ισορροπεί, ισχύει: � ��( )� � 0   ή  � � � �
�� ����F w
� � � �� �� �

2 1

0

ή  0 0 2 0
2 1

� � � � � �T R T R   ή  � � �T T
2 1

2   ή  � �T N
2

120 .
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Είναι: �
2 2
� �T   ή  Τ2 = 120 Ν.

Επειδή ο κύλινδρος ισορροπεί, ισχύει: Στ(Κ) = 0  ή  � � � �
��w N

� � � �� �
2

0

ή  0 0 0
2

� � � �T R T R��   ή  Τστ = Τ2  ή  Τστ = 120 Ν.
Επειδή ο κύλινδρος ισορροπεί, ισχύει ακόμη: �

 

F � 0   ή  ΣFx = 0 (1)
και  ΣFy = 0 (2).
Από τη σχέση (1) προκύπτει: w T T

K x( )
� � �

2
0��  ή  mgημφ = Τ2 + Τστ  ή  m = 30 kg.

β. Επειδή τα ενιαίο σώμα Σ, ισορροπεί, ισχύει: �
 

F � 0   ή  ΣFx = 0 (3)
και  ΣFy = 0 (4).
Από τη σχέση (3) προκύπτει: F T

x
� �

1
0  ή  Fx = 60 N.

Από τη σχέση (4) προκύπτει: ΣFy = 0  ή  F w w
y
� � �� 0  ή  Fy = wΔ + w

ή  Fy = mΔg + Mg  ή  Fy = 120 N.
Το μέτρο της δύναμης που ασκείται στο ενιαίο σώμα από τον άξονα περιστροφής του δίνεται 
από τη σχέση: F F F

x y
� �2 2   ή  F N= 10 180 .

γ. Έστω υcm το μέτρο της ταχύτητας του κέντρου μάζας του κυλίνδρου τη χρονική στιγμή t1. 

Είναι: s t
cm

�
1

2
1

2�   ή  t
s

cm

1

2
�

�
  ή  t1 = 2 s.

Το μέτρο της ταχύτητας του κέντρου μάζας του κυλίνδρου τη χρονική στιγμή t1 υπολογίζεται 
από τη σχέση: υcm = αcmt1  ή  υcm = 2 m/s.

δ. Έστω ωτ το μέτρο της γωνιακής ταχύτητας της τροχαλίας τη χρονική στιγμή t1.

(2)

φ

(Σ1)

(Σ2)R
Ρ

Θ
Ο′

2R
R

Κυcm

υcm

υ

υ′

Επειδή το νήμα (2) είναι αβαρές και μη εκτατό, τη χρονική στιγμή t1 ισχύει:
 

     ή    

  
cm
     ή    2

cm
 ή  ωτR = 2υcm  ή  ωτ = 20 rad/s.

Έστω αγων(τ) το μέτρο της γωνιακής επιτάχυνσης της τροχαλίας.
Είναι: ωτ = αγων(τ)t1  ή  αγων(τ) = 10 rad/s2.
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Έστω Δθ1 η γωνία στροφής της τροχαλίας από τη χρονική στιγμή t = 0 έως τη χρονική στιγμή 

t1. Είναι: �� ���� �1 1

21

2
�

( )
t   ή  Δθ1 = 20 rad.

Έστω αγων το μέτρο της γωνιακής επιτάχυνσης του κυλίνδρου. Είναι: αcm = αγωνR
ή  αγων = 5 rad/s2.
Έστω Δθ2 η γωνία στροφής του κυλίνδρου από τη χρονική στιγμή t = 0 έως τη χρονική στιγμή 

t1. Είναι: �� ����2 1

21

2
� t   ή  Δθ2 = 10 rad.

Ο ζητούμενος λόγος υπολογίζεται από τη σχέση: �
�

�

�
1

2

1

2

2

2

�

�

�
�

�

  ή  �
�

�
�

1

2

1

2

�
�

�
  ή  ��

��
1

2

2�� .

ε. Το μήκος του νήματος που ξετυλίγεται από την περιφέρεια του δίσκου ακτίνας R της διπλής 
τροχαλίας στο χρονικό διάστημα από τη χρονική στιγμή t = 0 έως τη χρονική στιγμή t1 δίνεται 
από τη σχέση: 

1 1
� R��   ή  

1
4= m.

Το μήκος του νήματος που τυλίγεται στην περιφέρεια του κυλίνδρου στο χρονικό διάστημα από 
τη χρονική στιγμή t = 0 έως τη χρονική στιγμή t1 δίνεται από τη σχέση: 

2 2
� R��

ή  
2

2= m.

Το συνολικό μήκος του νήματος (2) που ξετυλίγεται είναι:   � �
1 2

  ή  �� �� 2 m.

23. α. Στο ακόλουθο σχήμα έχουν σχεδιαστεί οι δυνάμεις που ασκούνται στα σώματα.

Σ
3

Σ
1

Σ
2

(1)

(2)

R
2

R
1

Δ

Κ

Ο
B

Γ

d

Α

+

w
τ

w
3

w
1

Τ
2

Τ
στ

Τ
1

FΤ′
2

Τ′
3

Τ
3

Ν

Επειδή το σώμα Σ3 ισορροπεί, ισχύει: �
 

F � 0   ή  ΣFy = 0 
T w

3 3
0� �   ή  T3 = M3g  ή  T3 = 10 N.

Είναι: � �T T
3 3

  ή  � �T
3

10 �.

Επειδή η τροχαλία ισορροπεί, ισχύει: Στ(Ο) = 0  ή  � � � �
�F w

� � � �� �� �
3 2

0

ή  0 0 0
3 2 2 2

      R R  ή  � � �� �
2 3

 ή  � ��
2

10 N.

Είναι: � �2 2� �   ή  Τ2 = 10 Ν.
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Επειδή ο δίσκος Σ1 ισορροπεί, ισχύει: Στ(Κ) = 0  ή  � � � � �
��� � � �

1 2 1

0� � � � �
w

ή  � � �
1 1 2 1 1

0 0 0( )d R R R� � � � � ���   ή  1

2
1 1 2 1 1
� �R R T R� � ��   ή  � �

1 2
2 2� � T��  (1).

Επειδή ο δίσκος Σ1 ισορροπεί, ισχύει: �
 

F � 0   ή  ΣFx = 0 (2) και ΣFy = 0.

Από τη σχέση (2) προκύπτει: � �
1 2

0� � �T��   ή  Τ1 = Τ2 + Τστ  (3).

Από τις σχέσεις (1) και (3) προκύπτει: 2 2
2 2

� �� � �T T�� ��   ή  T�� �
�

2

3
  ή  T 10

3
.στ  

Από τη σχέση (3) για T�� �
10

3
�,  προκύπτει: T1

40
3

�� ��.

β. Έστω μια τυχαία χρονική στιγμή t στην οποία η ταχύτητα του σώματος Σ3 είναι υ  και η 
ταχύτητα του κέντρου μάζας του δίσκου Σ1 είναι υ

cm
.  

Έστω ότι η γωνιακή επιτάχυνση της τροχαλίας είναι ���� �( )
 και ότι τη χρονική στιγμή t η γω­

νιακή της ταχύτητα είναι ��.  

Σ
3

Σ
2

(2)υ
cm

υ
2

υ
1

υ

α

υ′
1

Σ
1

R
1

Κ

Λ Ν

R
2

Ο
Θ

Επειδή το νήμα (2) είναι αβαρές και μη εκτατό, ισχύει:  

     ή   

  1   ή  υ = ωτR2

ή παραγωγίζοντας: d

dt

d

dt
R

 
2

  ή  α = αγων(τ)R2 (4).

Επειδή το νήμα (2) είναι αβαρές και μη εκτατό, ισχύει ακόμη:  

     ή    

  
cm
  

2 1
 

ή    
cm
  

2 1
  ή  2υcm = ωτR2  ή παραγωγίζοντας: 2

2

d

dt

d

dt
R

cm
    ή  2αcm = αγων(τ)R2 (5).

Από τις σχέσεις (4) και (5) προκύπτει: 2αcm = α  ή  αcm = 1 m/s2.

γ. Το μέτρο της ταχύτητας του κέντρου μάζας του δίσκου Σ1 τη χρονική στιγμή t1 υπολογίζεται 
από τη σχέση: υcm = αcmt1  ή  υcm = 1 m/s.
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Τη χρονική στιγμή t1 το υλικό σημείο Ζ έχει ταχύτητα υ
cm

 λόγω της μεταφορικής κίνησης του 
δίσκου Σ1 και γραμμική ταχύτητα υ3  λόγω της στροφικής κίνησης του δίσκου Σ1. Η ταχύτητα 
του σημείου Ζ τη χρονική στιγμή t1 δίνεται από τη σχέση:   

    
cm 3

 (6).

υ
2

Σ1

R1

Κ

Z

υ
cm

υ
cmυ

Z

υ
3

d1

Έστω ω το μέτρο της γωνιακής ταχύτητας του δίσκου τη χρονική στιγμή t1. Επειδή ο δίσκος 
κυλίεται χωρίς να ολισθαίνει, ισχύει: υcm = ωR1  ή  ω = 5 rad/s.

Η απόσταση του σημείου Ζ από το κέντρο Κ του δίσκου είναι: r R d� �
1 1

  ή  r
R

= 1

2
 

ή  r1 = 0,1 m.
Το μέτρο της γραμμικής ταχύτητας του σημείου Ζ τη χρονική στιγμή t1 υπολογίζεται από τη 
σχέση: υ3 = ωr  ή  υ3 = 0,5 m/s.
Επειδή τα διανύσματα υ

cm
 και υ3  έχουν αντίθετη φορά, η σχέση (6) γράφεται:

    
cm 3

  ή  υΖ = 0,5 m/s.

δ. Έστω h η κατακόρυφη μετατόπιση του σώματος Σ3 από τη χρονική στιγμή t = 0 έως τη 
χρονική στιγμή t2. Αν θεωρήσουμε ως επίπεδο μηδενικής βαρυτικής δυναμικής ενέργειας το 
οριζόντιο επίπεδο που διέρχεται από το σημείο της τροχιάς στο οποίο βρίσκεται το σώμα Σ3 τη 
χρονική στιγμή t2, τότε για τη μεταβολή της βαρυτικής δυναμικής ενέργειας του σώματος Σ3 
ισχύει: �U U U

t t
� �

2 1

 ή  �U M gh� �0
3

 ή  �U M gh� �
3

 ή  h = 4 m.

Είναι: h t�
1

2
2

2�   ή  t2 = 2 s.

Έστω αγων το μέτρο της γωνιακής επιτάχυνσης του δίσκου Σ1. Είναι: αcm = αγωνR1

ή  αγων = 5 rad/s2.
Έστω Δθ1 η γωνία στροφής του δίσκου από τη χρονική στιγμή t = 0 έως τη χρονική στιγμή t2. 

Είναι: �� ����1 2

21

2
� t   ή  Δθ1 = 10 rad.

Το πλήθος των περιστροφών που εκτελεί ο δίσκος Σ1 από τη χρονική στιγμή t = 0 έως τη χρονι-

κή στιγμή t2 είναι: � �
�

�

�
1

2
  ή  Ν = 5/π περιστροφές.
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24. α. Στο παρακάτω σχήμα έχουν σχεδιαστεί οι εξωτερικές δυνάμεις που ασκούνται στο σύ-
στημα της ράβδου και των σημειακών σωμάτων Σ1 και Σ2, καθώς και οι δυνάμεις που ασκούνται 
στο σώμα Σ3.

T2

w3

Σ2

(1)
(2)

Σ1 Μ

Σ3

φ

d
/2� /2�

A Γ

FFy

Fx

T1x

T1y
T1

T′2

w1

w2

+

Επειδή η ράβδος ισορροπεί, ισχύει: Στ(Μ) = 0  ή  � � � � �� �
1 1 2 2

0� � � � ��w F w
  

ή  T w w
y1 1 2

2 2
0 0

2
0

  

� � � � �   ή  T w w
1 2 1
��� � �   ή  T

m g m g

1

2 1�
�

���
  ή  Τ1 = 20 Ν.

Επειδή το σώμα Σ3 ισορροπεί, ισχύει: �
 

F � 0   ή  ΣFy = 0  ή  Τ2 = w3  ή  T2 = m3g  ή  T2 = 50 N.
Είναι: � �� �2 2   ή  � �� �

2
50 .  

Επειδή η ράβδος ισορροπεί, ισχύει ακόμη: �
 

F � 0   ή  ΣFx = 0 (1)  και  ΣFy = 0 (2).
Από τη σχέση (1) έχουμε: F T

x x
� �

1
0   ή  Fx = T1συνφ  ή  F

x
�10 3 �.

Από τη σχέση (2) έχουμε: F T w w T
y y
� � � � � �

1 1 2 2
0   ή  F T m g m g T

y
� � � ��

1 1 2 2
���   

ή  Fy = 110 N.
Το μέτρο της δύναμης που ασκείται στη ράβδο από τον άξονα περιστροφής της είναι:

F F F
x y

� �2 2   ή  F N== 10 124 .

β. Ο ρυθμός μεταβολής της στροφορμής τη χρονική στιγμή t = 0, αμέσως μετά την κοπή του 

νήματος (1), είναι: dL

dt
w w



  ���� � � �� � � �
1 2 2

�   ή, αλγεβρικά: dL

dt
w w

���� � � �� � � �
1 2 2

�   

ή, θεωρώντας ως θετική φορά τη φορά από τον αναγνώστη προς τη σελίδα:
dL

dt
m g m g

���� � � � �
1 2

2 2
0

    ή  dL

dt
kg m s

���� � � �10
2 2
/   ή  dL

dt
kg m s10 2 2/ .συστ

γ. Επειδή τη χρονική στιγμή t = 0 η αλγεβρική τιμή του ρυθμού μεταβολής της στροφορμής του 
συστήματος ράβδος – σημειακά σώματα Σ1 και Σ2 είναι θετική, το σύστημα στρέφεται σύμφωνα 
με τη φορά περιστροφής των δεικτών του ρολογιού.



273

Κεφάλαιο 2ο: Μηχανική στερεού σώµατος

Έστω ω1 το μέτρο της γωνιακής ταχύτητας του συστήματος της ράβδου και των σημειακών 
σωμάτων Σ1 και Σ2 τη χρονική στιγμή t1 ακριβώς πριν από την κρούση. 
Τα μέτρα υ1 και υ2 των γραμμικών ταχυτήτων των σωμάτων Σ1 και Σ2 αντίστοιχα τη χρονική 

στιγμή t1 δίνονται από τις σχέσεις:  
1 1

2
   (3) και  

2 1
2

   (4).

Σ
2

Σ
2

Μ

Θέση Ι

Θέση ΙΙ

Α

Α

Γ

Γ

Σ
1

Σ
1

υ
1

υ
2

ω
1

βαρU 0
βαρU 0

Από την Αρχή Διατήρησης της Μηχανικής Ενέργειας για την κίνηση του συστήματος ράβδος 
– σημειακά σώματα Σ1 και Σ2 μεταξύ των θέσεων Ι και ΙΙ που φαίνονται στο παραπάνω σχήμα 
έχουμε: Εμηχ(αρχ) = Εμηχ(τελ)  ή  Καρχ + Uαρχ = Κτελ + Uτελ

ή  0
2 2

1

2

1

2
1 2 1 1

2

2 2

2

1
� � � � �m g m g m m m g

 

� �

ή, λόγω των σχέσεων (3) και (4): 

m m g m m
2 1 1 1

2

2 1

2

2

1

2 2

1

2 2
�� � � �

�
�

�
�
� � �

�
�

�
�
�

  

� �   ή  �
1

2 1

1 2

4
�

�
�

( )

( )

m m g

m m 

  ή  ω1 = 2 rad/s

Έστω L1,2 η αλγεβρική τιμή της στροφορμής του συστήματος των σημειακών σωμάτων Σ1 και 
Σ2 ως προς τον άξονα ′x x  τη χρονική στιγμή t1 ακριβώς πριν από την κρούση. 

Είναι: L1,2 = L1 + L2 (5), όπου L1 και L2 οι αλγεβρικές τιμές των στροφορμών των σημειακών 
σωμάτων Σ1 και Σ2 αντίστοιχα τη χρονική στιγμή t1 ακριβώς πριν από την κρούση. Επειδή οι 
στροφορμές L1 και L2 έχουν φορά από τον αναγνώστη προς τη σελίδα, από τη σχέση (5) προ-

κύπτει: L m m
1 2 1 1 2 2

2 2
,
  

    ή  L m m
1 2 1 1

2

2 1

2

2 2
,
� �

�
�

�
�
� � �

�
�

�
�
�� �

    ή  L m m
1 2 1 2

2

1

1

4
,
� �� � �

ή  L1,2 = 10 kg · m2/s.
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δ. Έστω υ3 το μέτρο της ταχύτητας του σημειακού σώματος Σ3 και ω2 το μέτρο της γωνιακής 
ταχύτητας του συστήματος της ράβδου και των σημειακών σωμάτων Σ1 και Σ2 αμέσως μετά την 
κρούση. Από την Aρχή Διατήρησης της Στροφορμής για το σύστημα που αποτελείται από το 
σημειακό σώμα Σ3 και το ενιαίο σώμα που δημιουργούν η ράβδος μαζί με τα σημειακά σώματα 
Σ1 και Σ2 έχουμε: 

 

L L���� ���� ���� ����( ) ( )
� ΄   ή, αλγεβρικά: Lραβ + L1,2 = Lραβ + L1,2 + L3  

ή  0
2 2

0
2 2 2

1 1 2 2 1 1 2 2 3 3
      m m m m m    

      

ή  m m m m m
1 1

2

2 1

2

1 2

2

2 2

2

3
2 2 2 2

   
   





 





 





 





 
3

2

  

ή  ( )( )m m m
1 2 1 2 3 3

2
    

  (6).

Επειδή η κρούση είναι ελαστική, ισχύει: Κσυστ(πριν) = Κσυστ(μετά)  

ή  1

2

1

2

1

2

1

2

1

2
1 1

2

2 2

2

1 1

2

2 2

2

3 3

2
m m m m m          

ή  m m m m m
1 1

2

2 1

2

1 2

2

2 2

2

3
2 2 2 2

   
   





 





 





 





 
3

2

ή  ( )( )m m m
1 2 1

2

2

2

2

3 3

2

4
    

  (7).

Με διαίρεση κατά μέλη των σχέσεων (7) και (6) προκύπτει: ( )� � �
1 2 3

2
� �

  (8).
Επιλύοντας το σύστημα των εξισώσεων (6) και (8), προκύπτει: υ3 = 2 m/s.

25. α. Η γωνία Δθ που έχει διαγράψει το σύστημα ράβδος – σημειακά σώματα Σ1 και Σ2 από τη 
χρονική στιγμή t = 0 έως τη χρονική στιγμή t1 είναι: Δθ = Ν 2π  ή  Δθ = 20π rad.

Ισχύει: �� �����
1

2
1

2
t   ή  � �

��� �
2

1

2

�
t

  ή  αγων = 10π rad/s2.

β. Έστω ω1 το μέτρο της γωνιακής ταχύτητας του συστήματος τη χρονική στιγμή t1. Είναι: 

ω1 = αγωνt1  ή  ω1 = 20π rad/s.

γ. Έστω 


L
1 2,

 η στροφορμή του συστήματος των υλικών σημείων Σ1 και Σ2 τη χρονική στιγμή 
t1. Είναι: 

  

L L L
1 2 1 2,
� �  ή, αλγεβρικά:  L1,2 = L1 + L2  ή, θεωρώντας ως θετική τη φορά από τον 

αναγνώστη προς τη σελίδα: L m d m d
1 2 1 1 2 2,

( )       ή  L m d m d
1 2 1 1

2

2 1

2

,
( )� � �� � 

ή L m d m d
1 2 1

2

2

2

1,
( )� � ��� �� �   ή  L1,2 = 360π kg · m2/s.

δ. Η στροφορμή 


L���� ����( )
 του συστήματος της ράβδου και των σημειακών σωμάτων Σ1 και Σ2 

τη χρονική στιγμή t1 ακριβώς πριν από την κρούση είναι: 
  

L L L
¬���� ���� � ����( ) ,

� �
1 2 ράβδου  ή, αλγεβρι-



275

Κεφάλαιο 2ο: Μηχανική στερεού σώµατος

κά: Lσυστ(πριν) = L1,2 + Lράβδου.

Επειδή η ράβδος είναι αβαρής, είναι: Lράβδου = 0, οπότε: Lσυστ(πριν) = L1,2 

ή  L kg m s���� ���� �
( )

.� �360
2
/

Η συνισταμένη των ροπών των εξωτερικών δυνάμεων που ασκούνται στο σύστημα ράβδος 
– σημειακά σώματα Σ1 και Σ2 ως προς τον άξονα ′z z  είναι ίση με τη ροπή του ζεύγους των 
δυνάμεων 



F
1
 και 



F
2
.  Είναι: Στεξ = Στζεύγους  ή  �� ����� � F

1
 .

Επειδή η ροπή του ζεύγους των δυνάμεων είναι σταθερή, ο ρυθμός μεταβολής της στροφορμής 
του συστήματος της ράβδου και των σημειακών σωμάτων Σ1 και Σ2 από τη χρονική στιγμή  
t = 0 έως τη χρονική στιγμή t1 ακριβώς πριν από την κρούση είναι σταθερός. Συνεπώς, ισχύει:
dL

dt

����
���� �   ή  �

�
L

t
F

���� ����
1
   ή  F

L

t
1

1

0
�

����� ����

���
( )



  ή  F1 = 72π Ν.

ε. Έστω ω2 το μέτρο της γωνιακής ταχύτητας της ράβδου και των σημειακών σωμάτων Σ1, Σ2 
και Σ3 αμέσως μετά την κρούση. Από την αρχή διατήρησης της στροφορμής για το σύστημα 
των σωμάτων που αποτελείται από το σημειακό σώμα Σ3 και το ενιαίο σώμα που δημιουργούν η 
ράβδος μαζί με τα σημειακά σώματα Σ1 και Σ2 κατά την κρούση, έχουμε: 

 

L L
¬���� ���� ���� ���( ) ( )

� (μετά)   
ή  m d m d m d m m d

1 1 2 2 1 1 2 3 2
         ( ) ( ) ( ) 

ή   m d m d m d m m d
1 1

2

2 1

2

1 2

2

2 3 2

2� � � �� � � � � �( ) ( ) ( ) 

 ή  m d m d m d m m d
1

2

2

2

1 1

2

2 3

2

2
� ��� �� � � � ��� ��( ) ( )( ) � �   ή  ω2 = 7,2 π rad/s.

Επειδή το δάπεδο είναι λείο, το σύστημα της ράβδου και των σημειακών σωμάτων Σ1, Σ2 και Σ3 
εκτελεί μετά την κρούση ομαλή περιστροφική κίνηση με γωνιακή ταχύτητα μέτρου ω2. Έστω 
� ��  η γωνία που διαγράφει το σύστημα αυτό από τη χρονική στιγμή t1 έως τη χρονική στιγμή 
t2. Είναι: � � � �� �

2 2 1
( )t t   ή  � � �� �72 rad.

Το ζητούμενο πλήθος των περιστροφών προκύπτει: � �
�

�
��
�2

  ή  Ν′ = 36 περιστροφές.

26. α. Έστω ω1 το μέτρο της γωνιακής ταχύτητας του συστήματος δακτύλιος – σημειακά σώ-
ματα τη χρονική στιγμή t1. Η στροφορμή 



L  του συστήματος των σημειακών σωμάτων Σ1 και Σ2 
τη χρονική στιγμή t1 ως προς τον άξονα ′z z,  δίνεται από τη σχέση: 

  

L L L� �
1 2

 (1), όπου 


L
1
 και 



L
2
 οι στροφορμές των σημειακών σωμάτων Σ1 και Σ2 αντίστοιχα τη χρονική στιγμή t1 ως προς 

τον άξονα ′z z.  Επειδή τα διανύσματα 


L
1
 και 



L
2
 έχουν την ίδια φορά, η σχέση (1) γράφεται:

L = L1 + L2  ή  L = m1υ1R + m2υ2R  ή  L = m1ω1R
2 + m2ω1R

2

ή  L = (m1 + m2)ω1R
2  ή  ω1 = 16 rad/s.

β. Είναι ω1 = αγων(1)t1  ή  αγων(1) = 8 rad/s2.
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γ. Είναι: � � ����� �
1 2( )

�t   ή  0
1 2 2 1

� � �� ����( )
( )t t   ή  � �

���( )2

1

2 1

�
�t t

  ή  αγων(2) = 2 rad/s2.

δ. Έστω Δθ1 η γωνία στροφής του συστήματος δακτύλιος – σημειακά σώματα από τη χρονική 

στιγμή t = 0 έως τη χρονική στιγμή t1. Είναι: �� ����1 1 1

21

2
0� �

( )
(t )   ή  Δθ1 = 16 rad.

Έστω Δθ2 η γωνία στροφής του συστήματος ράβδος – δακτύλιοι από τη χρονική στιγμή t1 έως 

τη χρονική στιγμή t2. Είναι: � � �� � ����2 1 2

21

2
� �t t

( )
( )   ή  �� � ����2 1 2 1 2 2 1

21

2
� � � �( ) ( )

( )
t t t t   

ή  Δθ2 = 64 rad.

To ζητούμενο πλήθος των περιστροφών είναι: � � �
�

�� �

�
1 2

2
  ή  Ν = (40/π) περιστροφές.

ε. Από τη χρονική στιγμή t = 0 έως τη χρονική στιγμή t1 ισχύει: dL

dt



����
���� �   ή  dL

dt
F



���� ��
1

  

ή, αλγεβρικά dL

dt
F

���� ��
1

 ή, θεωρώντας ως θετική τη φορά από τον αναγνώστη προς τη σελίδα: 

dL

dt
FR

���� �
1

 (2).

Από τη σχέση (2) προκύπτει ότι η αλγεβρική τιμή του ρυθμού μεταβολής της στροφορμής 
του συστήματος δακτύλιος – σημειακά σώματα είναι σταθερή στο χρονικό διάστημα από τη 

χρονική στιγμή t = 0 έως τη χρονική στιγμή t1. Επομένως, η σχέση (2) γράφεται: �
�
L

t
FR

���� �
1

 ή  
L L

t
FR

���� ��� ���� ���( ) ( )
�

�
1

1
  ή  F

L

Rt
1

1

0
�

����� ���( )   ή  F
L L

Rt
1

1

�
�����   ή, επειδή ο δακτύλιος 

είναι αβαρής,  F
L

Rt
1

1

0
�

�   ή  F
L

Rt
1

1

=   ή  F1 = 6 N.

Από τη χρονική στιγμή t1 έως τη χρονική στιγμή t2 για το σύστημα δακτύλιος – σημειακά σώμα-

τα ισχύει: dL

dt



����
���� �   ή, αλγεβρικά  dL

dt
F F

���� � �� �
1 2

  ή  dL

dt
FR F R

���� � �
1 2

 (3).

Από τη σχέση (3) προκύπτει ότι η αλγεβρική τιμή του ρυθμού μεταβολής της στροφορμής του 
συστήματος από τη χρονική στιγμή t1 έως τη χρονική στιγμή t2 είναι σταθερή, οπότε η σχέση 

(3) γράφεται: �
�
L

t
FR F R

���� � �
1 2

  ή  0

2 1

1 2

�
�

� �
L

t t
FR F R   ή  F F

L

R t t
2 1

2 1

� �
�( )

  ή  F2 = 7,5 N.

27. α. Οι δυνάμεις που ασκούνται στο σώμα Σ1 κατά τη διάρκεια της κίνησής του από το μέ-
σον Κ της σανίδας στο άκρο της Γ είναι: το βάρος του w

1
,  η δύναμη 



F  που αναλύεται σε δύο 
κάθετες μεταξύ τους συνιστώσες 



F
x

 και 


F
y
,  η τριβή ολίσθησης 



���  και η κάθετη δύναμη 


Ν  
από τη σανίδα.
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φ

A Γ

(1)

Σ
1

F

Ν

F
y

F
x

T
ολ

w
1

Είναι: ΣFy = 0  ή  F N w
y
� � �

1
0  ή  N w F

y
� �

1
 ή  N m g F� �

1
���  ή  Ν = 2 Ν.

Το μέτρο της τριβής ολίσθησης υπολογίζεται από τη σχέση: Τολ = μΝ  ή  Τολ = 1 Ν.
Οι δυνάμεις που ασκούνται στη σανίδα τη χρονική στιγμή t1 είναι: το βάρος της w  στο μέσον 
της Κ, η τάση 



Τ1  από το νήμα (1), η δύναμη 
  

� � � �� � �( )  και η δύναμη 
  

� � � �� � ��� �� ��( )  
από το σώμα Σ1, καθώς και η δύναμη 



F
A

 από την άρθρωση, η οποία αναλύεται σε δύο κάθετες 
μεταξύ τους συνιστώσες 



F
Ax

 και 


F
Ay

,  όπως φαίνεται στο ακόλουθο σχήμα. 

A

K

Γ

(1)

t
1

Ν′

F
Ay

F
Ax

F
A

T
1

T
ολ

w
d

+

Είναι: � �� �  ή  � �� �2 .  
Επειδή η σανίδα ισορροπεί, ισχύει: Στ(Α) = 0  ή  � � � � �

��F w
A

� � � � �� �� � �
1

0  

ή  0
2

0 0
1

1

1
� � � � � �� d w N



   ή  T1 = 40 N.

β. Επειδή η σανίδα ισορροπεί, ισχύει: �
 

F � 0   ή  ΣFx = 0 (1)  και  ΣFy = 0 (2).
Είναι: � �� ��� ��   ή  � �� ��� 1 .

Από τη σχέση (1) προκύπτει: F T
Ax
� � ��� 0   ή  FAx = 1 N.

Από τη σχέση (2), προκύπτει: F T w N
Ay
� � � � �

1
0   ή  F T Mg N

Ay
� � � � �

1

ή  F N
Ay
� �22 .

Το αρνητικό πρόσημο σημαίνει ότι η συνιστώσα 


F
Ay

 έχει αντίθετη φορά από τη φορά που έχει 
σχεδιαστεί στο παραπάνω σχήμα.
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Το μέτρο της δύναμης που ασκείται στη σανίδα από την άρθρωση υπολογίζεται από τη σχέση:

F F F
A Ax Ay
� �2 2   ή  F NA == 485 .

γ. Έστω υ1 το μέτρο της ταχύτητας του σώματος Σ1 ακριβώς πριν από την κρούση. Από το 
Θ.Μ.Κ.Ε. για την κίνηση του σώματος Σ1 από τη χρονική στιγμή t = 0 έως τη χρονική στιγμή t1 
ακριβώς πριν από την κρούση, έχουμε: � ���� ��� ��

� � � � �W W W W
F T w N

1

ή  1

2
0

2 2
0 0

1 1

2 1 1
m F          ή  υ1 = 10 m/s.

A K Γ

(1)

υ = 0

(2)
F

y

F
x

F

T
ολ

T
2

d

A Γ

O

Σ
2

Σ
2

Σ
1

O

Δ

1
/2�

2
�

2
�

υ

υ′
1 υ′

2

w
1

w
2

Πριν από την κρούση

Μετά από την κρούση

βαρU 0=
βαρU 0=

Ν
υ

1

Έστω  2  η ταχύτητα του σώματος Σ2 αμέσως μετά την κρούση και υ  η ταχύτητά του τη χρο-
νική στιγμή στην οποία διέρχεται από το ανώτερο σημείο Δ της κυκλικής τροχιάς του. Εφόσον 
το σώμα Σ2 μόλις που εκτελεί ανακύκλωση, η τάση του νήματος (2) που ασκείται στο σώμα Σ2 

στο σημείο Δ είναι ίση με μηδέν (Τ2 = 0). Στη θέση Δ ισχύει: ΣFακτ = Fκ  ή  
2 2 2

2

2

 w m



ή  0
2

2

2

2

 m g
m 


  ή    g
2

  ή    5 m s/ .



279

Κεφάλαιο 2ο: Μηχανική στερεού σώµατος

Από την Α.Δ.Μ.Ε. για την κίνηση του σώματος Σ2 μετά την κρούση μεταξύ των θέσεων Γ και Δ 

έχουμε: Εμηχ(Γ) = Εμηχ(Δ)  ή  ΚΓ + UΓ = ΚΔ + UΔ  ή  1

2
0

1

2
2

2 2

2

2

2

2 2
m m m g     

ή   
2

5 m s/ .

Επειδή η κρούση είναι ελαστική, ισχύει:  


 
2

1

1 2

1

2m

m m
  ή  m2 = 3 kg.

δ. Έστω υΛ το μέτρο της ταχύτητας του σώματος Σ2 τη χρονική στιγμή t2 στην οποία βρίσκεται 
σε ύψος h επάνω από τη θέση όπου πραγματοποιήθηκε η κρούση.

θ

θT′
2

x
h

υ
Λ

Γ
Σ
2

Σ
2

O

Λ

2
�

υ′
2

βαρU 0=
βαρU 0=

w
2x

w
2y

w
2

Ρ

Από την Α.Δ.Μ.Ε. για την κίνηση του σώματος Σ2 μεταξύ των θέσεων Γ και Λ, έχουμε:

Εμηχ(Γ) = Εμηχ(Λ)  ή  ΚΓ + UΓ = ΚΛ + UΛ  ή  1

2
0

1

2
2 2

2

2

2

2
m m m gh    

ή     
2

2
2gh   ή  υΛ = 3 m/s.

Το μέτρο της στροφορμής του σώματος Σ2 ως προς τον άξονα ′x x  τη χρονική στιγμή t2 είναι:
L m

2 2
   ή  L = 4,5 kg · m2/s.

ε. Από το ορθογώνιο τρίγωνο ΟΡΛ που φαίνεται στο προηγούμενο σχήμα προκύπτει:

���� �
x



2

  ή  ���� �
� � 



2

2

2

2

2

( )h
  ή  συνθ = 0,8.

Το μέτρο του ρυθμού μεταβολής της στροφορμής του σώματος Σ2 ως προς τον άξονα ′x x  τη 

χρονική στιγμή t2 είναι: dL

dt
w

� ��� ��
2 2

  ή  dL

dt
w

x
� �0

2 2
   ή  dL

dt
m g

2 2


ή  dL
dt

kg m s�� ��12 2 2/ .
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